Physiologic systemic iron metabolism in mice deficient for duodenal Hfe

Molecular Medicine Partnership Unit, University of Heidelberg, Germany.
Blood (Impact Factor: 9.78). 06/2007; 109(10):4511-7. DOI: 10.1182/blood-2006-07-036186
Source: PubMed

ABSTRACT Mutations in the Hfe gene result in hereditary hemochromatosis (HH), a disorder characterized by increased duodenal iron absorption and tissue iron overload. Identification of a direct interaction between Hfe and transferrin receptor 1 in duodenal cells led to the hypothesis that the lack of functional Hfe in the duodenum affects TfR1-mediated serosal uptake of iron and misprogramming of the iron absorptive cells. Contrasting this view, Hfe deficiency causes inappropriately low expression of the hepatic iron hormone hepcidin, which causes increased duodenal iron absorption. We specifically ablated Hfe expression in mouse enterocytes using Cre/LoxP technology. Mice with efficient deletion of Hfe in crypt- and villi-enterocytes maintain physiologic iron metabolism with wild-type unsaturated iron binding capacity, hepatic iron levels, and hepcidin mRNA expression. Furthermore, the expression of genes encoding the major intestinal iron transporters is unchanged in duodenal Hfe-deficient mice. Our data demonstrate that intestinal Hfe is dispensable for the physiologic control of systemic iron homeostasis under steady state conditions. These findings exclude a primary role for duodenal Hfe in the pathogenesis of HH and support the model according to which Hfe is required for appropriate expression of the "iron hormone" hepcidin which then controls intestinal iron absorption.

Download full-text


Available from: Judit Kiss, Jan 27, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in either the hereditary hemochromatosis protein, HFE, or transferrin receptor 2, TfR2, result in a similarly severe form of the most common type of iron overload disease called hereditary hemochromatosis. Models of the interactions between HFE, TfR1, and TfR2 imply that these proteins are present in different molar concentrations in the liver, where they control expression of the iron regulatory hormone, hepcidin, in response to body iron loading. The aim of this study was to determine in vivo levels of mRNA by quantitative RT-PCR and concentrations of these proteins by quantitative immunoblotting in human liver tissues. The level of TfR2 mRNA was 21- and 63-fold higher than that of TfR1 and HFE, respectively. Molar concentration of TfR2 protein was the highest and determined to be 1.95 nmol/g protein in whole cell lysates and 10.89 nmol/g protein in microsomal membranes. Molar concentration of TfR1 protein was 4.5- and 6.1-fold lower than that of TfR2 in whole cell lysates and membranes, respectively. The level of HFE protein was below 0.53 nmol/g of total protein. HFE is thus present in substoichiometric concentrations with respect to both TfR1 and TfR2 in human liver tissue. This finding supports a model, in which availability of HFE is limiting for formation of complexes with TfR1 or TfR2.
    Blood Cells Molecules and Diseases 10/2009; 44(1):28-33. DOI:10.1016/j.bcmd.2009.09.004 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemochromatosis is caused by mutations in HFE, a protein that competes with transferrin (TF) for binding to transferrin receptor 1 (TFR1). We developed mutant mouse strains to gain insight into the role of the Hfe/Tfr1 complex in regulating iron homeostasis. We introduced mutations into a ubiquitously expressed Tfr1 transgene or the endogenous Tfr1 locus to promote or prevent the Hfe/Tfr1 interaction. Under conditions favoring a constitutive Hfe/Tfr1 interaction, mice developed iron overload attributable to inappropriately low expression of the hormone hepcidin. In contrast, mice carrying a mutation that interferes with the Hfe/Tfr1 interaction developed iron deficiency associated with inappropriately high hepcidin expression. High-level expression of a liver-specific Hfe transgene in Hfe-/- mice was also associated with increased hepcidin production and iron deficiency. Together, these models suggest that Hfe induces hepcidin expression when it is not in complex with Tfr1.
    Cell Metabolism 04/2008; 7(3):205-14. DOI:10.1016/j.cmet.2007.11.016 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary hemochromatosis (HH) is a prevalent, potentially fatal disorder of iron metabolism hallmarked by intestinal hyperabsorption of iron, hyperferremia, and hepatic iron overload. In both humans and mice, type I HH is associated with mutations in the broadly expressed HFE/Hfe gene. To identify where Hfe acts to prevent HH, we generated mice with tissue-specific Hfe ablations. This work demonstrates that local Hfe expression in hepatocytes serves to maintain physiological iron homeostasis, answering a long-standing question in medicine and explaining earlier clinical observations.
    Cell Metabolism 03/2008; 7(2):173-8. DOI:10.1016/j.cmet.2007.11.014 · 16.75 Impact Factor