Transcutaneous beta-amyloid immunization reduces cerebral beta-amyloid deposits without T cell infiltration and microhemorrhage.

Department of Psychiatry and Behavioral Medicine, University of South Florida, Tampa, FL 33613, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2007; 104(7):2507-12. DOI: 10.1073/pnas.0609377104
Source: PubMed

ABSTRACT Alzheimer's disease (AD) immunotherapy accomplished by vaccination with beta-amyloid (Abeta) peptide has proved efficacious in AD mouse models. However, "active" Abeta vaccination strategies for the treatment of cerebral amyloidosis without concurrent induction of detrimental side effects are lacking. We have developed a transcutaneous (t.c.) Abeta vaccination approach and evaluated efficacy and monitored for deleterious side effects, including meningoencephalitis and microhemorrhage, in WT mice and a transgenic mouse model of AD. We demonstrate that t.c. immunization of WT mice with aggregated Abeta(1-42) plus the adjuvant cholera toxin (CT) results in high-titer Abeta antibodies (mainly of the Ig G1 class) and Abeta(1-42)-specific splenocyte immune responses. Confocal microscopy of the t.c. immunization site revealed Langerhans cells in areas of the skin containing the Abeta(1-42) immunogen, suggesting that these unique innate immune cells participate in Abeta(1-42) antigen processing. To evaluate the efficacy of t.c. immunization in reducing cerebral amyloidosis, transgenic PSAPP (APPsw, PSEN1dE9) mice were immunized with aggregated Abeta(1-42) peptide plus CT. Similar to WT mice, PSAPP mice showed high Abeta antibody titers. Most importantly, t.c. immunization with Abeta(1-42) plus CT resulted in significant decreases in cerebral Abeta(1-40,42) levels coincident with increased circulating levels of Abeta(1-40,42), suggesting brain-to-blood efflux of Abeta. Reduction in cerebral amyloidosis was not associated with deleterious side effects, including brain T cell infiltration or cerebral microhemorrhage. Together, these data suggest that t.c. immunization constitutes an effective and potentially safe treatment strategy for AD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccine therapy for Alzheimer's disease (AD) based on the amyloid cascade hypothesis has recently attracted attention for treating AD. Injectable immunization using amyloid β peptide (Aβ) comprising 1-42 amino-acid residues (Aβ1-42) as antigens showed therapeutic efficacy in mice; however, the clinical trial of this injected Aβ1-42 vaccine was stopped due to the incidence of meningoencephalitis caused by excess activation of Th1 cells infiltrating the brain as a serious adverse reaction. Because recent studies have suggested that transcutaneous immunization (TCI) is likely to elicit Th2-dominant immune responses, TCI is expected to be effective in treating AD without inducing adverse reactions. Previously reported TCI procedures employed complicated and impractical vaccination procedures; therefore, a simple, easy-to-use, and novel TCI approach needs to be established. In this study, we investigated the vaccine efficacy of an Aβ1-42-containing TCI using our novel dissolving microneedle array (MicroHyala; MH) against AD. MH-based TCI induced anti-Aβ1-42 immune responses by simple and low-invasive application of Aβ1-42-containing MH to the skin. Unfortunately, this TCI system resulted in little significant improvement in cognitive function and Th2-dominant immune responses, suggesting the need for further modification.
    Journal of neuroimmunology 11/2013; DOI:10.1016/j.jneuroim.2013.11.002 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some evidence suggests that administration of β amyloid (Aβ) vaccines, passive anti-Aβ antibodies or anti-inflammatory drugs can reduce Aβ deposition as well as associated cognitive/behavioral deficits in an Alzheimer Disease (AD) transgenic (Tg) mouse model and, as such, may have some efficacy in human patients as well. In the investigation reported here an Aβ 1-42 peptide vaccine was evaluated in 16-month old APP+PS1 transgenic (Tg) mice in which Aβ deposition, cognitive memory deficits as well as levels of several pro-inflammatory cytokines were measured in response to the vaccination regimen. After vaccination, the anti-Aβ 1-42 antibody-producing mice demonstrated a significant reduction in the sera levels of 4 inflammatory cytokines (TNF-α, IL-6, IL-1 α, and IL-12). Importantly, reductions in the cytokine levels of TNF-α and IL-6 were correlated with cognitive/behavioral improvement in the Tg mice. However, no differences in cerebral Aβ deposition in these mice were noted among the different control and experimental groups, i.e., Aβ 1-42 vaccinated, control peptide vaccinated, or non-vaccinated mice. However, decreased pro-inflammatory cytokine levels and improved cognitive performance were noted in the control peptide as well as the Aβ peptide vaccinated mice. These findings suggest that reduction in pro-inflammatory cytokine levels in these mice may be used as an early biomarker of vaccination/treatment induced amelioration of cognitive deficits and are independent of Aβ deposition and, interestingly, antigen specific Aβ 1-42 vaccination. Since cytokine changes are typically related to T cell activation, the results imply that T cell regulation may putatively have an important role in vaccination or other immunotherapeutic strategies in an AD mouse model and potentially in AD patients. Overall then, these cytokine changes may serve as a predictive marker for AD development and progression as well as having potential therapeutic implications.
    Human Vaccines & Immunotherapeutics 04/2014; 10(7). DOI:10.4161/hv.28735 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroinflammation is involved in several neurodegenerative disorders and emerging evidence indicates that it constitutes a critical process that is required for the progression of neurodegeneration. Microglial activation constitutes a central event in neuroinflammation. Furthermore, microglia can not only be activated with an inflammatory and neurotoxic phenotype (M1-like phenotype), but they also can acquire a neurosupportive functional phenotype (M2-like phenotype) characterised by the production of anti-inflammatory mediators and neurotrophic factors. Importantly, during the past decade, several studies have shown that CD4+ T-cells infiltrate the central nervous system (CNS) in many neurodegenerative disorders, in which their participation has a critical influence on the outcome of microglial activation and consequent neurodegeneration. In this review, we focus on the analysis of the interplay of the different sub-populations of CD4+ T-cells infiltrating the CNS and how they participate in regulating the outcome of neuroinflammation and neurodegeneration in the context of Parkinson¿s disease, Alzheimer¿s disease, amyotrophic lateral sclerosis and multiple sclerosis. In this regard, encephalitogenic inflammatory CD4+ T-cells, such as Th1, Th17, GM-CSF-producer CD4+ T-cells and ¿¿T-cells, strongly contribute to chronic neuroinflammation, thus perpetuating neurodegenerative processes. In contrast, encephalitogenic or meningeal Tregs and Th2 cells decrease inflammatory functions in microglial cells and promote a neurosupportive microenvironment. Moreover, whereas some neurodegenerative disorders such as multiple sclerosis, Parkinson¿s disease and Alzheimer¿s disease involve the participation of inflammatory CD4+ T-cells 'naturally', the physiopathology of other neurodegenerative diseases, such as amyotrophic lateral sclerosis, is associated with the participation of anti-inflammatory CD4+ T-cells that delay the neurodegenerative process. Thus, current evidence supports the hypothesis that the involvement of CD4+ T-cells against CNS antigens constitutes a key component in regulating the progression of the neurodegenerative process.
    Journal of Neuroinflammation 12/2014; 11(1):201. DOI:10.1186/s12974-014-0201-8 · 4.90 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014