Human natural killer cells in health and disease.

Department of Pediatrics, Columbia University, New York, New York, USA.
Pediatric Blood & Cancer (Impact Factor: 2.35). 11/2007; 49(5):615-23. DOI: 10.1002/pbc.21158
Source: PubMed

ABSTRACT Natural killer (NK) cells are an essential component of the innate immune system and play a critical role in tumor immune surveillance. NK cells express their own repertoire of receptors (NKRs) that bind to major histocompatibility class I or class I-like molecules. The balance of signals from stimulation or inhibition of NKRs determines the ability of NK cells to lyse specific targets. In haploidentical stem cell transplantation with purified stem cells, NK cell alloreactivity (killer immunoglobulin-like receptor [KIR] mismatch) has been demonstrated to reduce the risk of relapse in acute myeloid leukemia. There is a need for adequately powered prospective randomized studies to determine the usefulness of NK cells as adoptive immunotherapy, optimal NK cell doses and timing of administration. Further studies are required to determine optimal selection of donors and recipients, both on NKR matching/mismatching, undergoing haploidentical and unrelated hematopoetic stem cell transplantation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although reduced natural killer (NK) cell levels have been reported consistently in patients with coronary artery disease (CAD), the clinical significance and persistence of this immune perturbation is not clarified. In this study we characterized the NK cell deficit further by determining (i) differentiation surface markers and cytokine profile of NK cell subsets and (ii) ability to reconstitute NK cell levels over time. Flow cytometry was used to analyse NK cell subsets and the intracellular cytokine profile in 31 patients with non-ST elevation myocardial infarction (non-STEMI), 34 patients with stable angina (SA) and 37 healthy controls. In blood collected prior to coronary angiography, the proportions of NK cells were reduced significantly in non-STEMI and SA patients compared with controls, whereas NK cell subset analyses or cytokine profile measurements did not reveal any differences across groups. During a 12-month follow-up, the proportions of NK cells increased, although not in all patients. Failure to reconstitute NK cell levels was associated with several components of metabolic syndrome. Moreover, interleukin (IL)-6 levels remained high in patients with sustained NK cell deficit, whereas a decline in IL-6 (P < 0·001) was seen in patients with a pronounced increase in NK cells. In conclusion, we found no evidence that reduction of NK cells in CAD patients was associated with aberrations in NK cell phenotype at any clinical stage of the disease. Conversely, failure to reconstitute NK cell levels was associated with a persistent low-grade inflammation, suggesting a protective role of NK cells in CAD.
    Clinical & Experimental Immunology 01/2014; 175(1):104-12. · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory monocytes and macrophages have been identified as key players in the pathogenesis of atherosclerosis, arterial hypertension, and myocardial infarction (MI). They become powerful mediators of vascular inflammation through their capacity to secrete and induce the production of proinflammatory cytokines, chemokines and adhesion molecules and through the production of reactive oxygen species mainly via their NADPH oxidase. Importantly, a crosstalk exists between NK cells and monocytes that works via a feedforwad amplification loop of T-bet/Interferon-gamma/interleukin-12 signaling, that causes mutual activation of both NK cells and monocytes and that fosters recruitment of inflammatory cells to sites of inflammation. Recently, we have discovered that this crosstalk is crucial for the unrestricted development of angiotensin II (ATII) induced vascular injury in arterial hypertension, the most important risk factor for atherosclerosis and cardiovascular disease worldwide. In this review, we will also discuss possible implications of this interplay between NK cells and monocytes for the pathogenesis of coronary atherosclerosis and myocardial infarction and potential therapeutic options.
    Frontiers in physiology. 01/2014; 5:295.

Full-text (2 Sources)

Available from
Oct 24, 2014