Article

TBX3, the gene mutated in ulnar-mammary syndrome, promotes growth of mammary epithelial cells via repression of p19ARF, independently of p53.

Dulbecco Telethon Institute/CNR-ITB, Via F lli Cervi 93 Segrate, Milano, Italy.
Cell and Tissue Research (Impact Factor: 3.33). 06/2007; 328(2):301-16. DOI: 10.1007/s00441-006-0364-4
Source: PubMed

ABSTRACT TBX3, the gene mutated in ulnar-mammary syndrome (UMS), is involved in the production of a transcription factor of the T-box family, known to inhibit transcription from the p14ARF (p19ARF in mouse) promoter in fibroblasts and to contribute to cell immortalization. One of the main features of the UMS phenotype is the severe hypoplasia of the breast, associated with haploinsufficiency of the TBX3 gene product. In mice homozygous for the targeted disruption of Tbx3, the mammary glands (MGs) are nearly absent from early stages of embryogenesis, whereas in heterozygous adults, the MGs show reduced ductal branching. All these data strongly suggest a specific role of TBX3 in promoting the growth of mammary epithelial cells (MECs), although direct evidence of this is lacking. Here, we provide data showing the growth-promoting function of Tbx3 in several models of MECs, in association with its ability to repress the ARF promoter. However, no effect of Tbx3 on cell differentiation or apoptosis has been observed. The growth promoting function also entails the down-regulation of p21 ( CIP1/WAF ) and an increase in cyclin D1 but is independent of p53 and Mdm2 cell-cycle regulatory proteins, as p53-null MECs show similar growth responses associated with the up- or down-regulation of Tbx3. This is the first direct evidence that the level of Tbx3 expression positively controls the proliferation of MECs via pathways alternative to Mdm2-p53.

Full-text

Available from: Gloria Bertoli, Apr 02, 2015
0 Followers
 · 
58 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factors TBX2 and TBX3 are overexpressed in various human cancers. Here, we investigated the effect of overexpressing the orthologous Tbx genes Drosophila optomotor-blind (omb) and human TBX2 in the epithelium of the Drosophila wing imaginal disc and observed two types of cell motility. Omb/TBX2 overexpressing cells could move within the plane of the epithelium. Invasive cells migrated long-distance as single cells retaining or regaining normal cell shape and apico-basal polarity in spite of attenuated apical DE-cadherin concentration. Inappropriate levels of DE-cadherin were sufficient to drive cell migration in the wing disc epithelium. Omb/TBX2 overexpression and reduced DE-cadherin-dependent adhesion caused the formation of actin-rich lateral cell protrusions. Omb/TBX2 overexpressing cells could also delaminate basally, penetrating the basal lamina, however, without degradation of extracellular matrix. Expression of Timp, an inhibitor of matrix metalloproteases, blocked neither intraepithelial motility nor basal extrusion. Our results reveal an MMP-independent mechanism of cell invasion and suggest a conserved role of Tbx2-related proteins in cell invasion and metastasis-related processes.
    Oncotarget 09/2014; 5(23):11998-12015. · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To increase our understanding of the mechanisms by which growth hormone (GH) and insulin-like growth factor (IGF)-I influence bovine mammary gland development, the potential roles of T-box2 (TBX2) and T-box3 (TBX3) were investigated. Although no information regarding expression of either transcription factor in the bovine mammary gland exists, it is known that TBX3 and its closely related family member, TBX2, are required for mammary gland development in humans and mice. Additionally, TBX3 mutations in humans and mice lead to ulnar mammary syndrome. Evidence is present in bone that TBX3 is required for proliferation and its expression is regulated by GH, an important regulator of mammary gland development and milk production. We hypothesized that TBX2 and TBX3 are expressed in the bovine mammary gland and that GH, IGF-I, or both increase TBX2 and TBX3 expression in bovine mammary epithelial cells (MEC). Bovine mammary gland tissue, MAC-T cells, primary MEC, and fibroblasts were obtained and TBX2 and TBX3 expression was determined by real-time reverse transcription PCR. In addition, TBX2 and TBX3 expression was examined in cells treated with 100 or 500 ng/mL of GH or 100 or 200 ng/mL of IGF-I for 24 or 48 h. Both TBX2 and TBX3 were expressed in bovine mammary tissue. Surprisingly, expression of TBX2 was only detected in mammary fibroblast cells, whereas TBX3 was expressed in all 3 cell types. Growth hormone did not alter TBX3 expression in MAC-T cells or MEC. However, IGF-I increased TBX3 expression in MAC-T, but not in primary MEC. We did not observe a change in TBX2 or TBX3 expression in fibroblasts treated with GH and IGF. Therefore, we concluded that (1) TBX2 and TBX3 are expressed in bovine mammary gland, (2) their expression is cell-type specific, and (3) IGF-I stimulates TBX3 expression in MAC-T cells.
    Journal of Dairy Science 04/2014; 97(7). DOI:10.3168/jds.2013-7771 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 08/2014; DOI:10.1016/j.bbcan.2014.08.004 · 7.58 Impact Factor