A general, robust method for the quality control of intact proteins using LC-ESI-MS

School of Biotechnology, Royal Institute of Technology, Albanova University Centre, 10691 Stockholm, Sweden.
Journal of Chromatography B (Impact Factor: 2.69). 07/2007; 852(1-2):188-94. DOI: 10.1016/j.jchromb.2007.01.011
Source: PubMed

ABSTRACT A simple and robust method for the routine quality control of intact proteins based on liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS) is presented. A wide range of prokaryotic and eukaryotic proteins expressed recombinantly in Escherichia coli or Pichia pastoris has been analyzed with medium- to high-throughput with on-line desalting from multi-well sample plates. Particular advantages of the method include fast chromatography and short cycle times, the use of inexpensive trapping/desalting columns, low sample carryover, and the ability to analyze proteins with masses ranging from 5 to 100 kDa with greater than 50 ppm accuracy. Moreover, the method can be readily coupled with optimized chemical reduction and alkylation steps to facilitate the analysis of denatured or incorrectly folded proteins (e.g., recombinant proteins sequestered in E. coli inclusion bodies) bearing cysteine residues, which otherwise form intractable multimers and non-specific adducts by disulfide bond formation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of N-bromoacetylglycosylamines and bromoketone C-glycosides were synthesised from complex xyloglucan oligosaccharide (XyGO) scaffolds as specific active-site affinity labels for endo-xyloglucanases. Compounds based on XXXG (Xyl3Glc4) and XLLG (Xyl3Glc4Gal2) oligosaccharides exhibited strikingly higher affinities and higher rates of irreversible inhibition than known cellobiosyl and new lactosyl disaccharide congeners when tested with endo-xyloglucanases from two distinct glycoside hydrolase (GH) families. Intact-protein mass spectrometry indicated that inactivation with XyGO derivatives generally resulted in a 1:1 labelling stoichiometry. Together, these results indicate that XyGO-based affinity reagents have significant potential as inhibitors and proteomic reagents for the identification and analysis of diverse xyloglucan-active enzymes in nature, to facilitate industrial enzyme applications.
    ChemBioChem 02/2015; 16(4). DOI:10.1002/cbic.201402663 · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis is dependent on cysteine biosynthesis and reduced sulfur compounds such as mycothiol synthesized from cysteine serve in first-line defence mechanisms against oxidative stress imposed by macrophages. Two biosynthetic routes to L-cysteine, each with its own specific cysteine synthase (CysK1 and CysM), have been described in M. tuberculosis, but the function of a third putative sulfhydrylase in this pathogen, CysK2 remained elusive. We present biochemical and biophysical evidence that CysK2 is a S-sulfocysteine synthase, utilizing O-phosphoserine (OPS) and thiosulfate as substrates. The enzyme uses a similar mechanism via a central aminoacrylate intermediate as other members of this pyridoxal-phosphate dependent enzyme family. The apparent second-order rate of the first half-reaction with OPS was determined as kmax/Ks = 3.97 x 10(3) M(-1) s(-1) ± 619, which compares well to the OPS-specific mycobacterial cysteine synthase CysM with a kmax/Ks = 1.34 × 10(3) ± 48.2. Notably CysK2 does not utilize thiocarboxylated CysO as sulfur donor, but accepts thiosulfate and sulfide as donor substrates. The specificity constant kcat/KM for thiosulfate is 40-fold higher than for sulfide suggesting an annotation as S-sulfocysteine synthase. Mycobacterial CysK2 thus provides a third metabolic route to cysteine, either directly using sulfide as donor or indirectly via S-sulfocysteine. Hypothetically S-sulfocysteine could also act as a signalling molecule triggering additional responses in redox defence in the pathogen upon exposure to reactive oxygen species during dormancy.
    Journal of Bacteriology 07/2014; 196(19). DOI:10.1128/JB.01851-14 · 2.69 Impact Factor
  • Source