Article

Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients

Statens Serum Institut, København, Capital Region, Denmark
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 04/2007; 354(3):776-82. DOI: 10.1016/j.bbrc.2007.01.048
Source: PubMed

ABSTRACT Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we identified the point mutations P91L and E33V in the KCNA5 gene encoding the Kv1.5 potassium channel that has not previously been associated with arrhythmia. We functionally characterized the mutations in HEK293 cells. The mutated channels behaved similarly to the wild-type with respect to biophysical characteristics and drug sensitivity. Both patients also carried a D85N polymorphism in KCNE1, which was neither found to influence the Kv1.5 nor the Kv7.1 channel activity. We conclude that although the two N-terminal Kv1.5 mutations did not show any apparent electrophysiological phenotype, it is possible that they may influence other cellular mechanisms responsible for proper electrical behaviour of native cardiomyocytes.

1 Follower
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: De ontdekking dat genetische mutaties ten grondslag kunnen liggen aan levensbedreigende hartritmestoornissen heeft geleid tot de screening van veel individuen en hun familieleden op erfelijke hartritmestoornissen, en het zo nodig behandelen van deze mensen. Het besef groeit dat dragerschap van een mutatie vaak geen goede voorspeller is van de ernst van de ziekte. Veel mutatiedragers vertonen nooit symptomen, anderen overlijden jong aan een hartstilstand. Het is onduidelijk wat deze variabiliteit bepaalt. Dat maakt het moeilijk patiënten met het grootste risico op hartstilstand te identificeren. Ahmad Shoaib Amin bespreekt de rol van genetische factoren (polymorfismen) en niet-genetische factoren (koorts en lichamelijke inspanning) die het ontstaan van hartritmestoornissen beïnvloeden en de grote variabiliteit in ziekte-ernst kunnen verklaren.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long QT syndrome (LQTS) is an inherited ion channel disorder manifesting with prolongation of the cardiac repolarization phase and severe ventricular arrhythmias. The common KCNE1 D85N potassium channel variant prolongs QT interval by inhibiting IKs (KCNQ1) and IKr (KCNH2) currents and is therefore a suitable candidate for a modifier gene in LQTS. We studied the effect of D85N on age-, sex-, and heart rate-adjusted QT-interval duration by linear regression in LQTS patients carrying the Finnish founder mutations KCNQ1 G589D (n = 492), KCNQ1 IVS7-2A>G (n = 66), KCNH2 L552S (n = 73), and KCNH2 R176W (n = 88). We also investigated the association between D85N and clinical variables reflecting the severity of the disease. D85N was associated with a QT prolongation by 26 ms (SE 8.6, p = 0.003) in males with KCNQ1 G589D (n = 213), but not in females with G589D (n = 279). In linear regression, the interaction between D85N genotype and sex was significant (p = 0.028). Within the KCNQ1 G589D mutation group, KCNE1 D85N carriers were more often probands of the family (p = 0.042) and were more likely to use beta blocker medication (p = 0.010) than non-carriers. The number of D85N carriers in other founder mutation groups was too small to assess its effects. We propose that KCNE1 D85N is a sex-specific QT-interval modifier in type 1 LQTS and may also associate with increased severity of disease. Our data warrant additional studies on the role of KCNE1 D85N in other genetically homogeneous groups of LQTS patients.
    BMC Medical Genetics 01/2011; 12:11. DOI:10.1186/1471-2350-12-11 · 2.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long QT syndrome (LQTS) is a congenital or drug-induced change in electrical activity of the heart that can lead to fatal arrhythmias. Mutations in 12 genes encoding ion channels and associated proteins are linked with congenital LQTS. With a computational systems biology approach, we found that gene products involved in LQTS formed a distinct functional neighborhood within the human interactome. Other diseases form similarly selective neighborhoods, and comparison of the LQTS neighborhood with other disease-centered neighborhoods suggested a molecular basis for associations between seemingly unrelated diseases that have increased risk of cardiac complications. By combining the LQTS neighborhood with published genome-wide association study data, we identified previously unknown single-nucleotide polymorphisms likely to affect the QT interval. We found that targets of U.S. Food and Drug Administration (FDA)-approved drugs that cause LQTS as an adverse event were enriched in the LQTS neighborhood. With the LQTS neighborhood as a classifier, we predicted drugs likely to have risks for QT effects and we validated these predictions with the FDA's Adverse Events Reporting System, illustrating how network analysis can enhance the detection of adverse drug effects associated with drugs in clinical use. Thus, the identification of disease-selective neighborhoods within the human interactome can be useful for predicting new gene variants involved in disease, explaining the complexity underlying adverse drug side effects, and predicting adverse event susceptibility for new drugs.
    Science Signaling 04/2010; 3(118):ra30. DOI:10.1126/scisignal.2000723 · 7.65 Impact Factor