Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients

Statens Serum Institut, København, Capital Region, Denmark
Biochemical and Biophysical Research Communications (Impact Factor: 2.3). 04/2007; 354(3):776-82. DOI: 10.1016/j.bbrc.2007.01.048
Source: PubMed


Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we identified the point mutations P91L and E33V in the KCNA5 gene encoding the Kv1.5 potassium channel that has not previously been associated with arrhythmia. We functionally characterized the mutations in HEK293 cells. The mutated channels behaved similarly to the wild-type with respect to biophysical characteristics and drug sensitivity. Both patients also carried a D85N polymorphism in KCNE1, which was neither found to influence the Kv1.5 nor the Kv7.1 channel activity. We conclude that although the two N-terminal Kv1.5 mutations did not show any apparent electrophysiological phenotype, it is possible that they may influence other cellular mechanisms responsible for proper electrical behaviour of native cardiomyocytes.

1 Follower
9 Reads
  • Source
    • "This is clearly suggestive that KCNE1 can modify or contribute to native human ventricular IKr. Additionally, there are conflicting reports regarding the effect of D85N polymorphism on recombinant IKs (KCNQ + KCNE1) with both reduced current amplitude (Westenskow et al. 2004; Nishio et al. 2009) and no change in amplitude (Nielsen et al. 2007; Nof et al. 2011) reported, whereas this mutation clearly reduces IhERG (Nishio et al. 2009; Nof et al. 2011). Thus, although KCNE1 mutations associated with QT interval prolongation may normally exert their effect through modulation of IKs (McCrossan and Abbott 2004; Modell and Lehmann 2006), effects mediated through IKr modulation can also occur. "
    [Show abstract] [Hide abstract]
    ABSTRACT: human Ether-à-go-go-Related Gene (hERG) encodes the pore-forming subunit of cardiac rapid delayed rectifier K(+) current (I Kr) channels, which play important roles in ventricular repolarization, in protecting the myocardium from unwanted premature stimuli, and in drug-induced Long QT Syndrome (LQTS). KCNE1, a small transmembrane protein, can coassemble with hERG. However, it is not known how KCNE1 variants influence the channel's response to premature stimuli or if they influence the sensitivity of hERG to pharmacological inhibition. Accordingly, whole-cell patch-clamp measurements of hERG current (I hERG) were made at 37°C from hERG channels coexpressed with either wild-type (WT) KCNE1 or with one of three KCNE1 variants (A8V, D76N, and D85N). Under both conventional voltage clamp and ventricular action potential (AP) clamp, the amplitude of I hERG was smaller for A8V, D76N, and D85N KCNE1 + hERG than for WT KCNE1 + hERG. Using paired AP commands, with the second AP waveform applied at varying time intervals following the first to mimic premature ventricular excitation, the response of I hERG carried by each KCNE1 variant was reduced compared to that with WT KCNE1 + hERG. The I hERG blocking potency of the antiarrhythmic drug quinidine was similar between WT KCNE1 and the three KCNE1 variants. However, the I hERG inhibitory potency of the antibiotic clarithromycin and of the prokinetic drug cisapride was altered by KCNE1 variants. These results demonstrate that naturally occurring KCNE1 variants can reduce the response of hERG channels to premature excitation and also alter the sensitivity of hERG channels to inhibition by some drugs linked to acquired LQTS.
    11/2013; 1(6):e00175. DOI:10.1002/phy2.175
  • Source
    • "HERG expresses a rapid delayed rectifier current (IKr), and the testing of potential drugs for their ability to block HERG is required for drug approval8. Kv1.5 conducts ultrarapid delayed rectifier current (IKur) in the human atria9, 10, and the loss-of-function mutation might also result in LQTS and cardiac arrest11. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To compare the effects of two stereoisomeric forms of glycyrrhetinic acid on different components of Na(+) current, HERG and Kv1.5 channel currents. Wild-type (WT) and long QT syndrome type 3 (LQT-3) mutant ΔKPQ Nav1.5 channels, as well as HERG and Kv1.5 channels were expressed in Xenopus oocytes. In addition, isolated human atrial myocytes were used. Two-microelectrode voltage-clamp technique was used to record the voltage-activated currents. Superfusion of 18β-glycyrrhetinic acid (18β-GA, 1-100 μmol/L) blocked both the peak current (I(Na,P)) and late current (I(Na,L)) generated by WT and ΔKPQ Nav1.5 channels in a concentration-dependent manner, while 18α-glycyrrhetinic acid (18α-GA) at the same concentrations had no effects. 18β-GA preferentially blocked I(Na,L) (IC(50)=37.2 ± 14.4 μmol/L) to I(Na,P) (IC(50)=100.4 ± 11.2 μmol/L) generated by ΔKPQ Nav1.5 channels. In human atrial myocytes, 18β-GA (30 μmol/L) inhibited 47% of I(Na,P) and 87% of I(Na,L) induced by Anemonia sulcata toxin (ATX-II, 30 nmol/L). Superfusion of 18β-GA (100 μmol/L) had no effects on HERG and Kv1.5 channel currents. 18β-GA preferentially blocked the late Na current without affecting HERG and Kv1.5 channels.
    Acta Pharmacologica Sinica 05/2012; 33(6):752-60. DOI:10.1038/aps.2012.22 · 2.91 Impact Factor
  • Source
    • "This gene variant also contributes to loss of IKs function together with a KCNQ1 mutation in Xenopus oocytes [10]. In another study of mammalian cells, however, D85N did not affect IKs current when co-expressed with KCNQ1 [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Long QT syndrome (LQTS) is an inherited ion channel disorder manifesting with prolongation of the cardiac repolarization phase and severe ventricular arrhythmias. The common KCNE1 D85N potassium channel variant prolongs QT interval by inhibiting IKs (KCNQ1) and IKr (KCNH2) currents and is therefore a suitable candidate for a modifier gene in LQTS. We studied the effect of D85N on age-, sex-, and heart rate-adjusted QT-interval duration by linear regression in LQTS patients carrying the Finnish founder mutations KCNQ1 G589D (n = 492), KCNQ1 IVS7-2A>G (n = 66), KCNH2 L552S (n = 73), and KCNH2 R176W (n = 88). We also investigated the association between D85N and clinical variables reflecting the severity of the disease. D85N was associated with a QT prolongation by 26 ms (SE 8.6, p = 0.003) in males with KCNQ1 G589D (n = 213), but not in females with G589D (n = 279). In linear regression, the interaction between D85N genotype and sex was significant (p = 0.028). Within the KCNQ1 G589D mutation group, KCNE1 D85N carriers were more often probands of the family (p = 0.042) and were more likely to use beta blocker medication (p = 0.010) than non-carriers. The number of D85N carriers in other founder mutation groups was too small to assess its effects. We propose that KCNE1 D85N is a sex-specific QT-interval modifier in type 1 LQTS and may also associate with increased severity of disease. Our data warrant additional studies on the role of KCNE1 D85N in other genetically homogeneous groups of LQTS patients.
    BMC Medical Genetics 01/2011; 12(1):11. DOI:10.1186/1471-2350-12-11 · 2.08 Impact Factor
Show more