Article

Topical iodine facilitates transdermal delivery of insulin.

Department of Clinical Pharmacology and School of Pharmacy, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
Journal of Controlled Release (Impact Factor: 7.63). 05/2007; 118(2):185-8. DOI: 10.1016/j.jconrel.2006.12.006
Source: PubMed

ABSTRACT Transdermal delivery of insulin is a non-invasive alternative to the subcutaneous injection of insulin in diabetic patients. It has been found that skin pretreatment with iodine followed by a dermal application of insulin results in reduced glucose and elevated hormone levels in the plasma. Topical iodine protects the dermally applied insulin presumably by inactivation of endogenous sulfhydryls such as glutathione and gamma glutamylcysteine which can reduce the disulfide bonds of the hormone. Thus, the effect of iodine is mediated by retaining the potency of the hormone during its penetration via the skin into the circulation. The proposed procedure might be applicable for additional disulfide-containing peptides such as calcitonin, somatostatin, oxytocin/vasopressin and their analogs.

0 Bookmarks
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article was published in the journal, Chemical Engineering Research and Design [Elsevier / © The Institution of Chemical Engineers] and the definitive version is available at: www.elsevier.com/locate/cherd Although transdermal drug delivery has been used for about three decades, the range of therapeutics that are administered this way is limited by the barrier function of the stratum corneum (the top layer of skin). Microneedle arrays have been shown to increase the drug permeability in skin by several orders of magnitude by bypassing the stratum corneum. This 15 can potentially allow the transdermal delivery of many medicaments including large macromolecules that typically cannot diffuse through the skin. This paper addresses the use of microneedles coated with a drug solution film. In particular, we identify how the geometries of various microneedles affect the drug permeability in skin. Effective skin permeability is calculated for a range of microneedle shapes and dimensions in order to identify the most 20 efficient geometry. To calculate effective permeability (Peff), the effective skin thickness (Heff) is calculated. These are then plotted for insulin as a model drug to see how various microneedle parameters affect the profiles of both Heff and Peff. It is found that the depth of penetration from the microneedle array is the most important factor in determining Peff, followed by the microneedle spacings. Other parameters such as microneedle diameter and 25 coating depth are less significant. Accepted for publication
    01/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study deals with the development of transferosomal gel containing insulin by reverse phase evaporation method for painless insulin delivery for use in the treatment of insulin dependent diabetes mellitus. The effect of independent process variables like ratio of lipids (soya lecithin:cholesterol), ratio of lipids and surfactants, and ratio of surfactants (Tween 80:sodium deoxycholate) on the in vitro permeation flux (μg/cm(2)/h) of formulated transferosomal gels containing insulin through porcine ear skin was optimized using 2(3) factorial design. The optimal permeation flux was achieved as 13.50 ± 0.22 μg/cm(2)/h with drug entrapment efficiency of 56.55 ± 0.37% and average vesicle diameter range, 625-815 nm. The in vitro insulin permeation through porcine ear skin from these transferosomal gel followed zero-order kinetics (R (2) = 0.9232-0.9989) over a period of 24 h with case-II transport mechanism. The in vitro skin permeation of insulin from optimized transferosomal gel by iontophoretic influence (with 0.5 mA/cm(2) current supply) also provided further enhancement of permeation flux to 17.60 ± 0.03 μg/cm(2)/h. The in vivo study of optimized transferosomal gel in alloxan-induced diabetic rat has demonstrated prolonged hypoglycemic effect in diabetic rats over 24 h after transdermal administration.
    Saudi Pharmaceutical Journal 10/2012; 20(4):355-63. · 0.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Encapsulation of therapeutic and diagnostic materials into polymeric particles is a means to protect and control or target the release of active substances such as drugs, vaccines, and genetic material. In terms of mucosal delivery, polymeric encapsulation can be used to promote absorption of the active substance, while particles can improve the half-life of drugs administered systemically. Spray drying is an attractive technology used to produce such microparticles, because it combines both the encapsulation and drying steps in a rapid, single-step operation. Even so, spray drying is not classically associated with processes used for drug and therapeutic material encapsulation, since elevated temperatures could potentially denature the active substance. However, a comprehensive review of the literature revealed a number of studies demonstrating that spray drying can be used to produce microparticulate formulations with labile therapeutics. Polymers commonly employed include synthetics such as methacrylic copolymers and polyesters, and natural materials including chitosan and alginate. Drugs and active substances are diverse and included antibiotics, anti-inflammatory agents, and chemotherapeutics. Regarding the delivery of spray-dried particles, the pulmonary, oral, colonic, and nasal mucosal routes are often investigated because they offer a convenient means of administration, which promotes physician and patient compliance. In addition, spray drying has been widely used to produce polymeric microparticles for systemic delivery in order to control the delivery of drugs, vaccines, or genetic material that may exhibit poor pharmacokinetic profiles or pose toxicity concerns. This review presents a brief introduction to the technology of spray drying and outlines the delivery routes and the applications of spray-dried polymeric microparticles.
    BioDrugs 12/2010; 24(6):359-77. · 2.12 Impact Factor