Article

Iontophoresis - an approach for controlled drug delivery: a review.

Department of Pharmaceutics, Jamia Hamdard, (Hamdard University), New Delhi-110062, India.
Current Drug Delivery 02/2007; 4(1):1-10. DOI: 10.2174/156720107779314802
Source: PubMed

ABSTRACT The recent approval of lidocaine hydrochloride and epinephrine combined iontophoretic patch (Lidosite Vysteris Inc.) for localized pain treatment by FDA has invigorated the gaining interest in iontophoretic drug delivery systems for the transdermal delivery of drugs. This technique of facilitated movement of ions across a membrane under the influence of an externally applied electric potential difference, is one of the most promising physical skin penetration enhancing method. The rationale behind using this technique is the capability of this method to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability, which is otherwise achieved only when parentral route of administration is used. Recently, good permeation of larger peptides like insulin has been achieved through this technique in combination with chemical enhancers. This review briefly describes the factors which affect iontophoretic drug delivery and summarizes the studies conducted recently using this technique in order to achieve higher systemic absorption of the drugs having low passive diffusion otherwise. The effect of permeation enhancers (chemical enhancers) on iontophoretic flux of drugs has also been described. Present review also provides an insight into reverse iontophoresis. Various parameters which affect the transdermal absorption of drugs through iontophoresis like drug concentration, polarity of drugs, pH of donor solution, presence of co-ions, ionic strength, electrode polarity etc. have also been reviewed in detail.

0 Bookmarks
 · 
250 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Techniques for controlling the rate and duration of drug delivery, whilst targeting specific locations of the body for treatment, to deliver the cargo (drugs or DNA) to particular parts of the body by what are becoming called "smart drug carriers" have gained increased attention during recent years. Using such smart carriers, researchers have also been investigating a number of physical energy forces including: magnetic fields, ultrasound, electric fields, temperature gradients, photoactivation or photorelease mechanisms, and mechanical forces to enhance drug delivery within the targeted cells or tissues and also to activate the drugs using a similar or a different type of external trigger. This review aims to cover a number of such physical energy modalities. Various advanced techniques such as magnetoporation, electroporation, iontophoresis, sonoporation/mechnoporation, phonophoresis, optoporation and thermoporation will be covered in the review. Special emphasis will be placed on photodynamic therapy owing to the experience of the authors' laboratory in this area, but other types of drug cargo and DNA vectors will also be covered. Photothermal therapy and theranostics will also be discussed.
    Advanced drug delivery reviews 06/2013; · 11.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iontophoresis is a method of non-invasive transdermal drug delivery based on the transfer of charged molecules using a low-intensity electric current. Both local and systemic administration is possible, however the skin pharmacokinetics of iontophoretically-delivered drugs is complex and difficult to anticipate. The unquestionable theoretical advantages of the technique make it attractive in several potential applications. After a brief review of the factors influencing iontophoresis, we detail the current applications of iontophoresis in therapeutics and the main potential applications under investigation, including systemic and topical drugs and focusing on the treatment of scleroderma-related ulcerations. Finally, we address the issue of safety, which could be a limitation to the routine clinical use of iontophoresis.
    British Journal of Clinical Pharmacology 04/2013; · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of zinc sulphate administered by transdermal iontophoresis (TDI) on mechanical resistance of surgical wounds performed in the skin of diabetic rats. One hundred and sixty male Wistar rats weighing approximately 250g were submitted to an incision surgery at the anterior region of abdomen and randomly distributed into four experimental groups with 40 non-diabetic control animals (G1) and 40 untreated diabetic animals (G2), both without any treatment of incisions; 40 non-diabetic animals (G3) and 40 untreated diabetic animals (G4), both with incisions treated with zinc sulphate, administered for a period of four consecutive days after surgery, in sessions of ten minutes duration, using a continuous-current electrostimulator (Zn + TDI). Each experimental group was further divided into four subgroups with ten rats each to be evaluated on the 4th, 7th, 14th, and 21st day after surgery. In each period were analyzed clinical and laboratory from the animals, and measured the breaking strength and hydroxyproline content (OH-P) of the skin scars. Breaking strength (BS) was significantly reduced (p<0.05) in skin scars of untreated diabetic rats (G2) on the 7th, 14th, and 21st postoperative days when compared to non-diabetic control rats (G1). In contrast, BS in skin scars of non-diabetic and untreated diabetic rats (G3, G4) treated with Zn + TDI showed significant increase (p<0.05) in those periods when compared with their respective controls with untreated incisions. The OH-P content of the scars did not show statistically significant variation in all studied groups at four different times evaluated after surgery. Zinc sulphate administered by transdermal iontophoresis had beneficial effect on the mechanical resistance of scars produced in the skin of diabetic rats. This therapeutic may have potential to reduce the complications observed in surgical wounds of the skin in diabetic subjects, mainly in most vulnerable stages of incisions to dehiscences, leakages and infections.
    Acta cirurgica brasileira / Sociedade Brasileira para Desenvolvimento Pesquisa em Cirurgia 08/2013; 28(8):601-6. · 0.48 Impact Factor

Full-text (2 Sources)

View
731 Downloads
Available from
Jun 3, 2014