Article

Iontophoresis - an approach for controlled drug delivery: a review.

Department of Pharmaceutics, Jamia Hamdard, (Hamdard University), New Delhi-110062, India.
Current Drug Delivery (Impact Factor: 2.25). 02/2007; 4(1):1-10. DOI: 10.2174/156720107779314802
Source: PubMed

ABSTRACT The recent approval of lidocaine hydrochloride and epinephrine combined iontophoretic patch (Lidosite Vysteris Inc.) for localized pain treatment by FDA has invigorated the gaining interest in iontophoretic drug delivery systems for the transdermal delivery of drugs. This technique of facilitated movement of ions across a membrane under the influence of an externally applied electric potential difference, is one of the most promising physical skin penetration enhancing method. The rationale behind using this technique is the capability of this method to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability, which is otherwise achieved only when parentral route of administration is used. Recently, good permeation of larger peptides like insulin has been achieved through this technique in combination with chemical enhancers. This review briefly describes the factors which affect iontophoretic drug delivery and summarizes the studies conducted recently using this technique in order to achieve higher systemic absorption of the drugs having low passive diffusion otherwise. The effect of permeation enhancers (chemical enhancers) on iontophoretic flux of drugs has also been described. Present review also provides an insight into reverse iontophoresis. Various parameters which affect the transdermal absorption of drugs through iontophoresis like drug concentration, polarity of drugs, pH of donor solution, presence of co-ions, ionic strength, electrode polarity etc. have also been reviewed in detail.

0 Followers
 · 
411 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic sclerosis (SSc) is a rare disease affecting digital microcirculation, leading to finger ulcers and in some cases to amputation. Prostacyclin analogues can be used intravenously but their therapeutic effect is counterbalanced by potentially serious vasodilatation-induced side effects. Iontophoresis of treprostinil could be a promising local therapeutic alternative for SSc-related digital ulcers. Iontophoretic drug delivery is complex, and whether continuous or periodic current should be used remains debated. The objective of the present work is to compare the effect of continuous vs pulsed iontophoresis of treprostinil in rats.
    European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences 02/2015; 72. DOI:10.1016/j.ejps.2015.02.012 · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015. Published by Elsevier B.V.
    International Journal of Pharmaceutics 02/2015; DOI:10.1016/j.ijpharm.2015.02.024 · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The purpose was to investigate the early modifications induced by collagen cross-linking by iontophoresis of riboflavin (ionto-CXL) in ex vivo human corneas by evaluating different protocols of UVA irradiation. Methods In this experimental study 46 ex vivo human corneas obtained from the Eye Bank of Mestre (Italy) were divided in different groups: six were utilized as control (CTL); eight were treated with ionto-CXL at 3 mW/cm2 power for 30 min (I-3); eight were treated with ionto-CXL at 10 mW/cm2 for 9 min (I-10); eight were treated with iontophoretic delivery of riboflavin only (I-0); eight were treated with the standard CXL at 3 mW/cm2 for 30 min (S-3); and eight were treated with CXL at 10 mW/cm2 for 9 min (S-10). All samples were evaluated by haematoxylin-eosin staining and immunohistochemical analysis using different markers (Connexin 43, CD34, Collagen I, TUNEL assay). Western blot analysis, utilizing Bax and Ki67 primary antibodies, for detection of keratocyte apoptosis and proliferation, respectively, was also performed. Results No endothelial damage was evidenced in the treated groups. In I-10 corneas the epithelial layers were not always well-preserved. Anterior stroma showed an uneven distribution and numerical reduction of keratocytes as well as increased apoptosis; a reduced subepithelial interweaving of collagen I fibers was observed. In S-3 and S-10 the changes induced by treatments were similar to I-10. I-3 and I-0 showed no significant changes with respect to the control group. Conclusions In the ionto-CXL at 10 mW/cm2 group occurred the main morphological and biomolecular changes. This experimental study suggests that iontophoresis can be considered a non-invasive potential delivery tool for riboflavin penetration in corneal stroma during CXL.
    Albrecht von Graæes Archiv für Ophthalmologie 11/2014; 253(2). DOI:10.1007/s00417-014-2836-7 · 2.33 Impact Factor