Article

A laboratory testing and driving system for AIROF microelectrodes.

ABSTRACT The charge-injection currents of AIROF (activated iridium oxide film) microelectrodes, which are subjected to charge-balanced biphasic pulsing or monophasic current pulsing, have to be limited such that the anodic and cathodic voltage excursions are kept within safe limits of operation. In earlier studies it has been shown that when using anodic bias asymmetry in the magnitude of the balanced biphasic waveform can be used to increase the charge injection capacity of AIROF electrodes. We present the design of a single-channel testing and driving system for laboratory testing and driving of AIROF microelectrodes within safe charge-injection limits.

0 Bookmarks
 · 
54 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microelectrodes with an upper functional layer of dc sputtered iridium oxide film (SIROF) are intended to be applied in biohybrid circuits for single insect neuron stimulation. In this paper, we report on electrochemical evaluation and of planar disc microelectrodes of varying size (diameter of 10 to 300 mum) and their charge injection properties of SIROF at microelectrode level during fast current pulses. The pulse injection charge (Q<sub>inj</sub>) limits represent only a fraction of the charge storage capacity (Q<sub>csc</sub>) measured by cyclic voltammetry. Electrodes with diameter down to 100 mum and 80 -100 mC .cm<sup>-2</sup> oxide charge capacity sustain about 2 mC.cm<sup>-2</sup> in pulse mode, while the maximum charge injection per phase for d=10 mum electrodes the respective values were Qcsc = 892.6 mC.cm<sup>-2</sup> and Q<sub>inj</sub> = 9.1 mC.cm<sup>-2</sup> .
    Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International; 07/2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activated Iridium Oxide Film (AIROF) microelectrodes are thought to be well-suited for neural stimulation of the cortex because they can sustain high charge capacity (about ten times higher than Pt microelectrodes) when characterized in phosphate-buffered saline (PBS) or other high ionic strength electrolytes. However, it is known that their capacity diminishes after they are implanted in vivo. It has been suggested that tissue encapsulation is an underlying cause. In this paper, we report electrochemical measurements of AIROF microelectrodes that were performed acutely in the brain of the zebra finch. The experiment showed that the interstitial fluid environment in the bird's brain did not maintain the high charge delivery capacity of the AIROF microelectrodes. A simple compensation for access resistance may create hazards to sustained electrode integrity.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 02/2006; 1:886-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Capacitive coupling within high-density microelectrode arrays can degrade neural recording signal or disperse neural stimulation current. Material deterioration in a chronically implanted neural stimulation/recording system can cause such an undesired effect. We present a simple method with an iterative algorithm to quantify the cross-coupling capacitance, in-situ.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 02/2006; 1:3365-8.