Hallucinogens Recruit Specific Cortical 5-HT2A Receptor-Mediated Signaling Pathways to Affect Behavior

Department of Biological Sciences, Columbia University, New York, New York, United States
Neuron (Impact Factor: 15.05). 03/2007; 53(3):439-52. DOI: 10.1016/j.neuron.2007.01.008
Source: PubMed

ABSTRACT Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens.

21 Reads
  • Source
    • "[6] [7] 5-HT 2A receptor agonist activity appears to be a necessary requirement for a compound to display psychedelic effects although this might not always be sufficient. [8] It is this particular feature, however, that has led to the recreational and commercial exploration, including manufacturing and sale via various outlets, such as online retailers or 'head shops'. The translation of laboratory-based research into a wider commodified open market has attracted concern worldwide . "
    [Show abstract] [Hide abstract]
    ABSTRACT: RationaleSubstances based on the N-(2-methoxybenzyl)phenethylamine template ('NBOMe' derivatives) play an important role in medicinal research but some of these derivatives have also appeared as 'research chemicals' for recreational use which has attracted attention worldwide. A major challenge associated with newly emerging substances includes the lack of analytical data and the ability to correctly identify positional isomers.Methods Six N-benzylphenethylamines based on the 2,5-dimethoxy-4-iodophenethylamine structure ('25I') and twelve substituted N-benzyl-5-methoxytryptamines ('5MT') have been prepared and extensively characterized. Techniques used for characterization were gas chromatography/ion trap mass spectrometry in electron and chemical ionization mode, liquid chromatography/diode array detection (DAD), infrared spectroscopy, electrospray high mass accuracy quadrupole time-of-flight tandem mass spectrometry, and triple quadrupole tandem mass spectrometry.ResultsThe characterization of 18 'NBOMe' compounds provided a comprehensive collection of chromatographic and spectral data. Four groups of three positional isomers, i.e. 25I-NB2OMe, 25I-NB3OMe, 25I-NB4OMe, 25I-NB2B, 25I-NB3B, 25I-NB4B and their 5-methoxytryptamine counterparts, were included and assessed for ability to obtain differentiation. Six meta-substituted N-benzyl derivatives of 5-methoxytryptamine (CF3, F, CH3, Cl, I, SCH3) were also studied.Conclusions The implementation of mass spectral techniques was helpful for the differentiation between isomers, for example, when considering the difference in a number of ion ratios. This was considered beneficial in cases where chromatographic separation was only partially achieved under liquid chromatography (LC) conditions. The use of LC/DAD analysis was also found to be valuable for this particular purpose, which confirmed the integrative value of complementary techniques used in areas related to forensic toxicology.
    Rapid Communications in Mass Spectrometry 04/2015; 29(7). DOI:10.1002/rcm.7134 · 2.25 Impact Factor
  • Source
    • "A possible explanation for these effects is that mGlu2 receptors colocalize with 5-HT 2A receptors to form heteroreceptor complexes (Delille et al. 2012; Gonzalez- Maeso et al. 2008; Gonzalez-Maeso et al. 2007). It has been suggested that the heteroreceptors induce a hallucinogenspecific second messenger cascade (Gonzalez-Maeso et al. 2008; Gonzalez-Maeso et al. 2007), although this has not been definitely established (Delille et al. 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods Drug discrimination, head twitch, and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084), and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low-potency full agonist at 5-HT2CR in vitro. Conclusions The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree.
    Psychopharmacology 07/2014; 232(1). DOI:10.1007/s00213-014-3658-3 · 3.88 Impact Factor
  • Source
    • "Although DOI acts on 5-HT 2A and 5-HT 2C receptors, DOI-induced head-twitch response (Dursun and Handley, 1996; Willins and Meltzer, 1997; Fantegrossi et al., 2010), c-Fos (Scruggs et al., 2000) and Egr-2 (Gonzalez-Maeso et al., 2007) expression have been proven to be mediated via activation of 5-HT 2A receptors, but not 5-HT 2C receptors. We found that MA-exposed mice have greater responsiveness to DOI and higher levels of 5-HT 2A receptors compared with controls. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The repeated administration of methamphetamine (MA) to animals in a single-day 'binge' dosing regimen produces damage to dopamine and serotonin terminals and psychosis-like behaviours similar to those observed in MA abusers. The present study aimed to examine the effects of MA binge exposure on 5-HT2A receptors, the subtype of serotonin receptors putatively involved in psychosis. ICR male mice were treated with MA (4 × 5 mg/kg) or saline at 2 h intervals. Recognition memory and social behaviours were sequentially evaluated by a novel location recognition test, a novel object recognition test, a social interaction and a nest-building test to confirm the persistent cognitive and behavioural impairments after this dosing regimen. Subsequently, a hallucinogenic 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch, molecular and electrophysiological responses were monitored. Finally, the levels of 5-HT2C, 5-HT1A, 5-HT2A and mGlu2 receptors in the medial prefrontal cortex were determined. MA binge exposure produced recognition memory impairment, reduced social behaviours, and increased DOI-induced head-twitch response, c-Fos and Egr-2 expression and field potentials in the medial prefrontal cortex. Furthermore, MA binge exposure increased 5-HT2A and decreased mGlu2 receptor expression in the medial frontal cortex, whereas 5-HT2C and 5-HT1A receptors were unaffected. These data reveal that the increased behavioural, molecular and electrophysiological responses to DOI might be associated with an up-regulation of 5-HT2A receptors in the medial prefrontal cortex after MA binge exposure. Identifying the biochemical alterations that parallel the behavioural changes in a mouse model of MA binge exposure may facilitate targeting therapies for treatment of MA-related psychiatric disorders.
    The International Journal of Neuropsychopharmacology 04/2014; 17(10):1-12. DOI:10.1017/S1461145714000455 · 4.01 Impact Factor
Show more


21 Reads
Available from