Two Tandemly Linked Interferon- ␥ -Activated Sequence Elements in the Promoter of Glycosylation-Dependent Cell Adhesion Molecule 1 Gene Synergistically Respond to Prolactin in Mouse Mammary Epithelial Cells

Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA.
Molecular Endocrinology (Impact Factor: 4.02). 11/2003; 17(10):1910-20. DOI: 10.1210/me.2003-0045
Source: PubMed


Previously, we reported that glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) was a novel target for prolactin (PRL) in the mouse mammary gland. However, the signaling pathway by which PRL regulates GlyCAM 1 expression has not been specified. In the present study, we showed that PRL induced GlyCAM 1 expression in primary mammary epithelial cells of mice through the Janus kinase 2/signal transducer and activator of transcription 5 (Stat5) pathway. Deletion and site-directed mutagenesis analyses of the GlyCAM 1 promoter demonstrated that the two tandemly linked Stat5 binding sites [interferon-gamma-activated sequence 1 and -2 (GAS1 and GAS2)] in the proximal promoter region were crucial and synergistically responded to PRL. GAS2, a consensus GAS site, was essential and, by itself, weakly responded to PRL, whereas GAS1, a nonconsensus site, failed to respond to PRL but was indispensable for the maximal activity of the GlyCAM 1 promoter. Gel shift assays showed that probe containing GAS1 and GAS2 bound two Stat5 complexes, which represent Stat5 dimer and tetramer, respectively, while GAS2, by itself, bound Stat5 as a dimer only, and GAS1 showed no apparent binding activity. Interruption of tetramer formation by mutation of a tryptophan to alanine (W37A), and a leucine to serine (L83S) in the N terminus of Stat5A attenuated the synergistic effect between the two tandemly linked GAS sites. Overexpression of W37A and L83S mutants in primary mammary epithelial cells suppressed endogenous GlyCAM 1 expression.

Download full-text


Available from: Zhaoyuan Hou, Jan 21, 2015
114 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolactin (PRL) is the primary hormone that, in conjunction with local factors, leads to lobuloalveolar development during pregnancy. Recently, receptor activator of NF-κB ligand (RANKL) has been identified as one of the effector molecules essential for lobuloalveolar development. The molecular mechanisms by which PRL may induce RANKL expression have not been carefully examined. Here we report that RANKL expression in the mammary gland is developmentally regulated and dependent on PRL and progesterone, whereas its receptor RANK (receptor activator of NF-κB) and decoy receptor osteoprotegerin (OPG) are constitutively expressed at all stages in both normal (PRL+/-) and prolactin knockout (PRL-/-) mice. In vitro, PRL markedly increased RANKL expression in primary mammary epithelial cells and RANKL-luciferase reporter activity in CHOD6 cells, which constitutively express the PRL receptor. We identified a γ-interferon activation sequence (GAS) in the region between residues -965 to -725 of the RANKL promoter, which conferred a PRL response. Using dominant negative mutants of recombinant Jak2 and Stat5 in CHOD6 cells, and by reconstituting the Jak2/Stat5 pathway in COS7 cells, we determined that Jak2 and Stat5a are essential for the PRL-induced RANKL expression in mammary gland.
    Journal of Biological Chemistry 12/2003; 278(46):46171-8. DOI:10.1074/jbc.M308545200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to characterize the housekeeping and tissue-specific genes in 15 mouse tissues by using the serial analysis of gene expression (SAGE) strategy which indicates the relative level of expression for each transcript matched to the tag. Here, we identified constantly expressed housekeeping genes, such as eukaryotic translation elongation factor 2, which is expressed in all tissues without significant difference in expression levels. Moreover, most of these genes were not regulated by experimental conditions such as steroid hormones, adrenalectomy and gonadectomy. In addition, we report previously postulated housekeeping genes such as peptidyl-prolyl cis-trans isomerase A, glyceraldehyde-3-phosphate dehydrogenase and beta-actin, which are expressed in all the tissues, but with significant difference in their expression levels. We have also identified genes uniquely detected in each of the 15 tissues and other tissues from public databases. These identified housekeeping genes could represent appropriate controls for RT-PCR and northern blot when comparing the expression levels of genes in several tissues. The results reveal several tissue-specific genes highly expressed in testis and pituitary gland. Furthermore, the main function of tissue-specific genes expressed in liver, lung and bone is the cell defence, whereas several keratins involved in cell structure function are exclusively detected in skin and vagina. The results from this study can be used for example to target a tissue for agent delivering by using the promoter of tissue-specific genes. Moreover, this study could be used as basis for further researches on physiology and pathology of these tissues.
    BMC Genomics 02/2007; 8(1):127. DOI:10.1186/1471-2164-8-127 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-dose prolactin induces proinflammatory responses and antibody production, whereas high-dose prolactin suppresses these responses. Mechanisms for these opposing effects remain incompletely defined. We have previously demonstrated that T-bet, a key transcription factor directing T helper type 1 inflammatory responses, is regulated by female steroid hormones in human mucosal epithelial cells via Stat1 and 5 pathways. T-bet was also modulated in a CD4+ T cell line by prolactin exposure. Prolactin rapidly induced T-bet transcription through phosphorylation of JAK2 and Stat5, but not Stat1. Phosphorylated Stat5 then bound to the T-bet regulatory region. These effects were weaker with high-dose prolactin exposures. Upon long-term prolactin exposure, low-dose prolactin induced T-bet expression, whereas high-dose prolactin tended to suppress it. Prolactin induced the suppressors of cytokine signaling (SOCS) 1 and 3 in a dose-dependent manner. With high-dose exposure, this was associated with an inhibition of the phosphorylation of T-bet regulatory region-bound Stat5. Further, the dose-dependent prolactin effects on T-bet expression were confirmed in murine primary CD4+ T cells. These data suggest that the divergent immune effects of low- and high-dose prolactin may involve modulation of T-bet and alterations in the balance of the prolactin/JAK2/Stat5 and the prolactin/SOCS1 and 3 pathways.
    Immunology and Cell Biology 05/2008; 86(7):616-21. DOI:10.1038/icb.2008.29 · 4.15 Impact Factor
Show more