Gene-expression variation within and among human populations.

Department of Biostatistics, University of Washington, Seattle, WA 98195-7730, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 04/2007; 80(3):502-9. DOI: 10.1086/512017
Source: PubMed

ABSTRACT Understanding patterns of gene-expression variation within and among human populations will provide important insights into the molecular basis of phenotypic diversity and the interpretation of patterns of expression variation in disease. However, little is known about how gene-expression variation is apportioned within and among human populations. Here, we characterize patterns of natural gene-expression variation in 16 individuals of European and African ancestry. We find extensive variation in gene-expression levels and estimate that approximately 83% of genes are differentially expressed among individuals and that approximately 17% of genes are differentially expressed among populations. By decomposing total gene-expression variation into within- versus among-population components, we find that most expression variation is due to variation among individuals rather than among populations, which parallels observations of extant patterns of human genetic variation. Finally, we performed allele-specific quantitative polymerase chain reaction to demonstrate that cis-regulatory variation in the lymphocyte adaptor protein (SH2B adapter protein 3) contributes to differential expression between European and African samples. These results provide the first insight into how human population structure manifests itself in gene-expression levels and will help guide the search for regulatory quantitative trait loci.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptome studies have revealed a surprisingly high level of variation among individuals in expression of key genes in the CNS under both normal and experimental conditions. Ten-fold variation is common, yet the specific causes and consequences of this variation are largely unknown. By combining classic gene mapping methods-family linkage studies and genomewide association-with high-throughput genomics, it is now possible to define quantitative trait loci (QTLs), single-gene variants, and even single SNPs and indels that control gene expression in different brain regions and cells. This review considers some of the major technical and conceptual challenges in analyzing variation in expression in the CNS with a focus on mRNAs, rather than noncoding RNAs or proteins. At one level of analysis, this work has been highly successful, and we finally have techniques that can be used to track down small numbers of loci that control expression in the CNS. But at a higher level of analysis, we still do not understand the genetic architecture of gene expression in brain, the consequences of expression QTLs on protein levels or on cell function, or the combined impact of expression differences on behavior and disease risk. These important gaps are likely to be bridged over the next several decades using (1) much larger sample sizes, (2) more powerful RNA sequencing and proteomic methods, and (3) novel statistical and computational models to predict genome-to-phenome relations.
    International Review of Neurobiology 01/2014; 116C:195-231. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Constitutional type of an individual or prakriti is the basic clinical denominator in Ayurveda, which defines physical, physiological, and psychological traits of an individual and is the template for individualized diet, lifestyle counseling, and treatment. The large number of phenotype description by prakriti determination is based on the knowledge and experience of the assessor, and hence subject to inherent variations and interpretations.
    Journal of Ayurveda and integrative medicine 09/2014; 5(3):167-175.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fathead minnow and zebrafish are among the most intensively studied fish species in environmental toxicogenomics. To aid the assessment and interpretation of subtle transcriptomic effects from treatment conditions of interest, better characterization and understanding are needed for natural variation in gene expression among fish individuals from lab cultures. Leveraging the transcriptomics data from a number of our toxicogenomics studies conducted over the years, we conducted a meta-analysis of nearly 600 microarrays generated from the ovary tissue of untreated, reproductively mature fathead minnow and zebrafish samples. As expected, there was considerable batch-to-batch transcriptomic variation; this "batch-effect" appeared to differentially impact subsets of fish transcriptomes in a nonsystematic way. Temporally more closely spaced batches tended to share a greater transcriptomic similarity among one another. The overall level of within-batch variation was quite low in fish ovary tissue, making it a suitable system for studying chemical stressors with subtle biological effects. The observed differences in the within-batch variability of gene expression, at the levels of both individual genes and pathways, were probably both technical and biological. This suggests that biological interpretation and prioritization of genes and pathways targeted by experimental conditions should take into account both their intrinsic variability and the size of induced transcriptional changes. There was significant conservation of both the genomes and transcriptomes between fathead minnow and zebrafish. The high degree of conservation offers promising opportunities in not only studying fish molecular responses to environmental stressors by a comparative biology approach, but also effective sharing of a large amount of existing public transcriptomics data for developing toxicogenomics applications.
    PLoS ONE 12/2014; 9(12):e114178. · 3.53 Impact Factor


Available from