Article

In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging.

Department of Radiology, Wayne State University, Detroit, MI 48201, USA.
Magnetic Resonance Imaging (Impact Factor: 2.02). 03/2007; 25(2):219-27. DOI: 10.1016/j.mri.2006.09.018
Source: PubMed

ABSTRACT Traumatic brain injury (TBI) is a prevalent disease, and many TBI patients experience disturbed cerebral blood flow (CBF) after injury. Moreover, TBI is difficult to quantify with conventional imaging modalities. In this paper, we utilized susceptibility weighted imaging (SWI) as a means to monitor functional blood oxygenation changes and to quantify CBF changes in animals after trauma. In this study using six rats, brain trauma was induced by a weight drop model and the brain was scanned over four time points: pre trauma, and 4 h, 24 h and 48 h post trauma. Five rats survived and one died after trauma. A blood phase analysis using filtered SWI phase images suggested that three rats recovered after 48 h and two rats deteriorated. SWI also suggested that CBF decreased by up to 26%. The CBF change is in agreement with the results of arterial spin labeling methods conducted in this study and with previously published results. Furthermore, SWI revealed an enlargement of the major venous vasculature in deep brain structures, in accordance with the location of diffuse axonal injury. Compared with the traditional, invasive, clinical monitoring of cerebral vascular damage and reduction in blood flow, this method offers a novel, safe and noninvasive approach to quantify changes in oxygen saturation and CBF and to visualize structural changes in blood vasculature after TBI.

0 Bookmarks
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The measurement of venous cerebral blood oxygenation (Yv) has potential applications in the study of patient groups where oxygen extraction and/or metabolism are compromised. It is also useful for fMRI studies to assess the stimulus-induced changes in Yv, particularly since basal Yv partially accounts for inter-subject variation in the haemodynamic response to a stimulus. A range of MRI-based methods of measuring Yv have been developed recently. Here, we use a method based on the change in phase in the MR image arising from the field perturbation caused by deoxygenated haemoglobin in veins. We build on the existing phase based approach (Method I), where Yv is measured in a large vein (such as the superior sagittal sinus) based on the field shift inside the vein with assumptions as to the vein's shape and orientation. We demonstrate two novel modifications which address limitations of this method. The first modification (Method II), maps the actual form of the vein, rather than assume a given shape and orientation. The second modification (Method III) uses the intra and perivascular phase change in response to a known change in Yv on hyperoxia to measure normoxic Yv in smaller veins. Method III can be applied to veins whose shape, size and orientation are not accurately known, thus allowing more localised measures of venous oxygenation. Results demonstrate that the use of an overly fine spatial filter caused an overestimation in Yv for Method I, whilst the measurement of Yv using Method II was less sensitive to this bias, giving Yv=0.62±0.03. Method III was applied to mapping of Yv in local veins across the brain, yielding a distribution of values with a mode of Yv=0.661±0.008.
    NeuroImage 08/2014; 101. DOI:10.1016/j.neuroimage.2014.07.050 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Decreased oxygen saturation in asymmetrically prominent cortical veins (APCV) seen in ischemic stroke has been hypothesized to correlate with an increase of de-oxygenated hemoglobin. Our goal is to quantify magnetic susceptibility to define APCV by establishing a cutoff above which the deoxyhemoglobin levels are considered abnormal. A retrospective study was conducted on 26 patients with acute ischemic stroke in one cerebral hemisphere that exhibited APCV with 30 age- and sex-matched healthy controls. Quantitative susceptibility mapping (QSM) was used to calculate the magnetic susceptibility of the cortical veins. A paired t-test was used to compare the susceptibility of the cortical veins in the left and right hemispheres for healthy controls as well as in the contralateral hemisphere for stroke patients with APCV. The change in oxygen saturation in the APCV relative to the contralateral side was calculated after thresholding the susceptibility using the mean plus two standard deviations of the contralateral side for each individual. The thresholded susceptibility value of the APCVs in the stroke hemisphere was 254±48ppb which was significantly higher (p<0.05) than that in the contralateral hemisphere (123±12ppb) and in healthy controls (125±8ppb). There was a decrease of oxygen saturation in the APCV ranging from 16% to 44% relative to the veins in the contralateral hemisphere. In conclusion, APCV seen in SWI correspond to reduced levels of oxygen saturation and these abnormal veins can be identified using a susceptibility threshold on the QSM data.
    Magnetic Resonance Imaging 08/2014; 32(10). DOI:10.1016/j.mri.2014.08.012 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report.
    Alzheimer's Research and Therapy 01/2014; 6(1):10. DOI:10.1186/alzrt239 · 3.50 Impact Factor