Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus.

Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases/National Institutes of Health, Bethesda, MD 20892, USA.
The Journal of Immunology (Impact Factor: 5.36). 03/2007; 178(4):2579-88. DOI: 10.4049/jimmunol.178.4.2579
Source: PubMed

ABSTRACT CD4(+)CD25(+) T regulatory cells (Tregs) play an essential role in maintaining immunologic homeostasis and preventing autoimmunity. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance to nuclear components. We hypothesized that altered function of CD4(+)CD25(high) Tregs might play a role in the breakdown of immunologic self-tolerance in patients with SLE. In this study, we report a significant decrease in the suppressive function of CD4(+)CD25(high) Tregs from peripheral blood of patients with active SLE as compared with normal donors and patients with inactive SLE. Notably, CD4(+)CD25(high) Tregs isolated from patients with active SLE expressed reduced levels of FoxP3 mRNA and protein and poorly suppressed the proliferation and cytokine secretion of CD4(+) effector T cells in vitro. In contrast, the expression of FoxP3 mRNA and protein and in vitro suppression of the proliferation of CD4(+) effector T cells by Tregs isolated from inactive SLE patients, was comparable to that of normal individuals. In vitro activation of CD4(+)CD25(high) Tregs from patients with active SLE increased FoxP3 mRNA and protein expression and restored their suppressive function. These data are the first to demonstrate a reversible defect in CD4(+)CD25(high) Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune checkpoint regulators are critical modulators of the immune system, allowing the initiation of a productive immune response and preventing the onset of autoimmunity. Co-inhibitory and co-stimulatory immune checkpoint receptors are required for full T-cell activation and effector functions such as the production of cytokines. In autoimmune rheumatic diseases, impaired tolerance leads to the development of diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Sjogren's syndrome. Targeting the pathways of the inhibitory immune checkpoint molecules CD152 (cytotoxic T lymphocyte antigen-4) and CD279 (programmed death-1) in cancer shows robust anti-tumor responses and tumor regression. This observation suggests that, in autoimmune diseases, the converse strategy of engaging these molecules may alleviate inflammation owing to the success of abatacept (CD152-Ig) in rheumatoid arthritis patients. We review the preclinical and clinical developments in targeting immune checkpoint regulators in rheumatic disease.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE), an autoimmune disease, develops when immunologic self-tolerance fails. Regulatory T (Treg) cells are a subset of CD4+T cells that maintain self-tolerance by suppressing autoreactive lymphocytes. Defects in Treg cells are therefore considered to be an aspect of SLE pathogenesis. Nevertheless, reports on the numbers and function of Treg cells in SLE are contradictory and the definitive role of Treg cells in SLE remains unclear. In this review, we summarize findings from murine models and ex vivo experiments, which provide insights into the mechanisms that result in the breakdown of tolerance. We also include recent findings about Treg-cell subsets and their markers in human SLE. The identification of unique markers to identify bona fide Treg cells, as well as therapies to reconstitute the balance between Treg cells and autoreactive T cells in SLE, are the future challenges for SLE research.This article is protected by copyright. All rights reserved
    European Journal of Immunology 11/2014; 45(2). DOI:10.1002/eji.201344280 · 4.52 Impact Factor
  • 09/2014; 5(2):33-45. DOI:10.1007/s13317-014-0058-y


Available from