A role for Cdc2- and PP2A-mediated regulation of Emi2 in the maintenance of CSF arrest.

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
Current Biology (Impact Factor: 9.49). 03/2007; 17(3):213-24. DOI: 10.1016/j.cub.2006.12.045
Source: PubMed

ABSTRACT Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell-cycle arrest by inhibiting the anaphase-promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood.
We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor Emi2. Emi2 bound to the core APC, and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2-mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions.
Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Emi2, a direct inhibitor of the APC/C ubiquitin ligase. Two different ubiquitin-conjugating enzymes, UbcH10 and Ube2S, work with the APC/C to target APC/C substrates for degradation. However, their possible roles and regulations in unfertilized/fertilized eggs are not known. Here we use Xenopus egg extracts to show that both UbcH10 and Ube2S are required for rapid cyclin B degradation at fertilization, when APC/C binding of Ube2S, but not of UbcH10, increases several fold, coincidently with (SCF(β-TrCP)-dependent) Emi2 degradation. Interestingly, before fertilization, Emi2 directly inhibits APC/C-Ube2S binding via the C-terminal tail, but on fertilization, its degradation allows the binding mediated by the Ube2S C-terminal tail. Significantly, Emi2 and Ube2S bind commonly to the APC/C catalytic subunit APC10 via their similar C-terminal tails. Thus, Emi2 competitively inhibits APC/C-Ube2S binding before fertilization, while its degradation on fertilization relieves the inhibition for APC/C activation.
    Nature Communications 01/2014; 5:3667. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ex ovo omnia-all animals come from eggs-this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII-arrest), the first mitotic cell cycle, and early embryonic divisions.
    The EMBO Journal 07/2013; · 9.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian oocytes in ovarian follicles are arrested in meiosis at prophase I. This arrest is maintained until ovulation, upon which the oocyte exits from this arrest, progresses through meiosis I and to metaphase of meiosis II. The progression from prophase I to metaphase II, known as meiotic maturation, is mediated by signals that coordinate these transitions in the life of the oocyte. ENSA (α-endosulfine) and ARPP19 (cAMP-regulated phosphoprotein-19) have emerged as regulators of M phase, with function in inhibition of protein phosphatase 2A (PP2A) activity. Inhibition of PP2A maintains the phosphorylated state of CDK1 substrates, thus allowing progression into and/or maintenance of an M-phase state. We show here ENSA in mouse oocytes plays a key role in the progression from prophase I arrest into M phase of meiosis I. The majority of ENSA-deficient oocytes fail to exit from prophase I arrest. This function of ENSA in oocytes is dependent on PP2A, and specifically on the regulatory subunit PPP2R2D (also known as B55δ). Treatment of ENSA-deficient oocytes with okadaic acid to inhibit PP2A rescues the defect in meiotic progression, with okadaic acid-treated, ENSA-deficient oocytes being able to exit from prophase I arrest. Similarly, oocytes deficient in both ENSA and PPP2R2D are able to exit from prophase I arrest to an extent similar to wild-type oocytes. These data are evidence of a role for ENSA in regulating meiotic maturation in mammalian oocytes, and also have potential relevance to human oocyte biology, as mouse and human have genes encoding both Arpp19 and Ensa.
    Cell cycle (Georgetown, Tex.) 03/2014; 13(10). · 5.24 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014