Innate immunity and mucus structure and function

Cystic Fibrosis Center, Campus Box 7248, 4019a Thurston Bowles, University of North Carolina at Chapel Hill, NC 27599, USA.
Novartis Foundation symposium 02/2006; 279:155-66; discussion 167-9, 216-9. DOI: 10.1002/9780470035399.ch13
Source: PubMed


Many of the proteins associated with innate immunity in the upper respiratory tract are to be found localized into mucus gels and the mucin-rich surface layers of the epithelium and the cilia. Mucus is a relatively dilute suspension of such macromolecules being around 2-4% solids in normal induced sputum. These proteins scavenge, immobilise and/or kill pathogens and at the same time immobilize them into the mucus. Mucus is moved from the lung by the mucociliary clearance mechanisms or by cough. Some 190 proteins are readily detectable in sputum by proteomics methods and about 100 in bronchial air-liquid interface culture secretions. This cell culture system mimics the surface ciliated phenotype of the large airways very well and about 85 secreted proteins are common to both culture and sputum secretions. The major single protein by weight in cell culture secretions is MUC5B and in sputum a mixture of MUC5B and MUC5AC. The three epithelial mucins MUC1, 4 and 16 are also detectable in both secretions. In this paper the roles that these molecules play in protecting and stabilising the ciliated surface and building the gel will be discussed. The role of water and ion homeostasis is particularly crucial in mucus gel formation and evidence is gathering that it is perturbation of hydration mechanisms that may play into defective mucus leading subsequently to stasis and mechanical problems.

51 Reads
  • Source
    • "The rate of mucociliary clearance depends on the composition of the airway surface liquid (ASL) lining the airway surface. ASL is made up of two layers, an upper viscoelastic layer of mucins secreted by the goblet cells and submucosal glands,50 which floats on a lower periciliary layer containing large membrane-bound glyocproteins, as well as tethered mucins (muc-1, muc-4 and muc-16).51,52 The periciliary layer is relatively less viscous, approximately 7 µM in height which corresponds to a length of outstretched cilia and acts as a lubricating layer for cilia to beat.32,52,53 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases.
    10/2013; 1(4):e24997. DOI:10.4161/tisb.24997
  • Source
    • "The fact that the solMUC5B had a slightly higher density compared to the gelMUC5B fits nicely with the findings that the surface layer of stomach mucus displayed a lower density than the superficial layer. In the airways, it has been suggested that the two mucins MUC5B and MUC5AC form spatially distinct mucus gels, one tuned to flow and the other to coughing (Sheehan et al., 2006). In the oral situation, one could postulate that gelMUC5B would act primarily on a surface constituting the mucus barrier, while solMUC5B would constitute a more solubilized lubricating mucus interacting with oral bacteria not yet attached to a surface. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Salivary mucin, MUC5B, is an oligomeric glycoprotein, heterogeneous in size and with a diverse repertoire of oligosaccharides, which differ in composition and charge. Since complex salivary glycoproteins are considered to be the major source of nutrients for the oral supragingival microbiota, the major aim of the current study was to determine whether different preparations of non-denatured MUC5B could be isolated exhibiting different biological properties in relation to the microflora associated with the surfaces of the oral cavity. Two preparations, solMUC5B and gelMUC5B, were isolated by density-gradient centrifugation and were shown to have different buoyant densities, carbohydrate content and surface-adsorbing characteristics. To ascertain differences in biological activity, the two mucin preparations, both in solution and adsorbed to a model surface, were incubated with freshly isolated dental plaque and assayed for metabolic (dehydrogenase) activity with the fluoresecent substrate CTC (5-cyano-2,3-ditolyl tetrazolium chloride). The plaque bacteria exhibited higher metabolism with the solMUC5B preparation in solution, with 79.4 % active plaque cells compared to the controls without mucin (9.6 %), while gelMUC5B showed 48.2 % active cells with the same plaque population. In contrast, the same mucins adhered to a surface elicited a significantly lower metabolic response, with surface-associated plaque cells showing only 12.1 % active cells with solMUC5B and 29.2 % with gelMUC5B. These results suggested that the metabolism by the plaque cells adsorbed to surface-associated mucins was downregulated compared to the same cells suspended in mucin solution. This was confirmed in an experiment where active dispersed plaque/solMUC5B suspensions were shown to lose significant metabolic activity (e.g. 74.9 to 19.3 %) when allowed to interact with gelMUC5B adsorbed to a surface. Clearly, the solMUC5B and gelMUC5B preparations exhibited different biological activity when assayed with freshly plaque bacteria in suspension and in a biofilm.
    Microbiology 02/2009; 155(Pt 1):53-60. DOI:10.1099/mic.0.022111-0 · 2.56 Impact Factor
  • Source
    • "MUC5B, in particular, is a major contributor to saliva, glandular secretions of the airway, and cervical secretions (Sheehan et al. 1986; Thornton et al. 1994, 1999; Nielsen et al. 1997; Troxler et al. 1997). We are particularly interested in the properties of this molecule in the airway as being an important and perhaps under some circumstances dominant contributor to the viscoelastic properties of airway secretions moving over ciliated surfaces (Thornton et al. 1994, 1996, 2000; Kirkham et al. 2002; Holmen et al. 2004; Sheehan et al. 2006). A schematic diagram outlining the major features of the structure of the MUC5B molecule is shown in Figure 1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glyconjugates such as mucins, proteoglycans, and polysaccharides form the structural basis of protective cell-surface layers. In particular gel-forming mucins define a zone between the epithelial cell layer and the environment. Such molecules are of extreme molecular weight 5-100 x 10(6) and size (Rg 20-300 nm). On this account their biochemistry is inseparable from their physical biochemistry. Combining laser light scattering and quartz crystal mass balance with dissipation methods (QCM-D) we have investigated the properties of the MUC5B mucin and its cognate fragments when bound to a hydrophobic surface. MUC5B forms the basis of gels responsible for the protection of the oral cavity, lung, and cervical canal surfaces. Here we show, by analyzing dissipative interactions of hydrophobic, gold, and polystyrene surfaces, with the intact MUC5B molecule, its reduced subunits, and glycosylated tryptic fragments (obtained after reduction), the formation of 40- to 100-nm-thick highly structured, hydrated interfaces. These interfaces are dominated in their geometry and dissipative properties by the negatively charged carbohydrate-rich domains of the molecule, the naked protein domains being responsible for attachment. These carbohydrate-rich surfaces have well-defined absorptive properties and permit the entry and entrapment of albumin-coated micro-beads into the absorbed layer at and below a size of 60 nm. However beads larger than 100 nm are completely excluded from the surfaces. These absorptive phenomena correlate with large changes in film dissipation and thus may not only be important in biological functions, e.g. binding viruses, but could also be informative to the surfaces (often ciliated) onto which such mucus films are attached.
    Glycobiology 07/2008; 18(6):463-72. DOI:10.1093/glycob/cwn024 · 3.15 Impact Factor
Show more