Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity

University of Cambridge, Cambridge, England, United Kingdom
Nature Genetics (Impact Factor: 29.65). 04/2007; 39(3):329-37. DOI: 10.1038/ng1958
Source: PubMed

ABSTRACT Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately twofold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we show that engineered haplodeficiency of Il2 gene expression not only reduces T cell IL-2 production by twofold but also mimics the autoimmune dysregulatory effects of the naturally occurring susceptibility alleles of Il2. Reduced IL-2 production achieved by either genetic mechanism correlates with reduced function of CD4(+) CD25(+) regulatory T cells, which are critical for maintaining immune homeostasis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Low-dose IL-2 administration suppresses unwanted immune responses in mice and humans, thus evidencing the potential of IL-2 to treat autoimmune disorders. Increased Tregs activity is one of the potential mechanisms by which low-dose IL-2 immunotherapy induces immunosuppression. In addition, recent data indicate that IL-2 may contribute to prevent unwanted self-reactive responses by preventing the developing of T-follicular helper cells, a CD4(+) T-cell subset that expands in autoimmune disease patients and promotes long-term effector B-cell responses. Here we discuss the mechanisms underlying the clinical benefits of low-dose IL-2 administration, focusing on the role of this cytokine in promoting Treg-mediated suppression and preventing self-reactive T-follicular helper cell responses.
    Immunotherapy 11/2014; 6(11):1207-20. DOI:10.2217/imt.14.83 · 2.39 Impact Factor
  • Frontiers in Bioscience 01/2008; Volume(13):4838. DOI:10.2741/3043 · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Tregs) play a major role in controlling effector T cells (Teffs) responding to self-antigens, which cause autoimmune diseases. An improper Treg/Teff balance contributes to most autoimmune diseases, including type 1 diabetes (T1D). To restore a proper balance, blocking Teffs with immunosuppressants has been the only option, which was partly effective and too toxic. It now appears that expanding/activating Tregs with low-dose interleukin-2 (IL-2) could provide immunoregulation without immunosuppression. This is particularly interesting in T1D as Tregs from T1D patients are reported as dysfunctional and a relative deficiency in IL-2 production and/or IL-2-mediated signaling could contribute to this phenotype. A clinical study of low-dose IL-2 showed a very good safety profile and good Treg expansion/activation in T1D patients. This opens the way for efficacy trials to test low-dose IL-2 in prevention and treatment of T1D and to establish in which condition restoration of a proper Treg/Teff balance would be beneficial in the field of autoimmune and inflammatory diseases.
    Current Diabetes Reports 12/2014; 14(12):553. DOI:10.1007/s11892-014-0553-6 · 3.38 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014