Cross- and axial-peak intensities in 2D-SLF experiments based on cross-polarization-The role of the initial density matrix

Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Journal of Magnetic Resonance (Impact Factor: 2.51). 05/2007; 185(2):308-17. DOI: 10.1016/j.jmr.2007.01.007
Source: PubMed


Simulations and experiments on simple oriented systems have been used to estimate the relative ratio of cross-peak to axial-peak intensities in 2D-SLF experiments based on dipolar oscillations during cross-polarization (CP). The density matrix prior to dipolar evolution is considered and for an isolated spin pair, it is shown that direct calculations of the ratios match well with simulations and experimental results. Along with the standard CP pulse sequence, two other pulse sequences namely CP with polarization inversion (PI-CP) and another novel variation of the standard CP experiment (EXE-CP) reported recently have been considered. Inclusion of homonuclear dipolar coupling has been observed to increase the axial-peak intensities. In combination with Lee-Goldburg (LG) decoupling, experiments on an oriented liquid crystalline sample have been carried out and the performance of the pulse schemes have been compared. The applicability of the new pulse sequence for different samples and different nuclei is discussed. Such studies are expected to lead to a better understanding of the experiments and to the design of useful pulse sequences.

1 Follower
10 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved pulse sequence for SLF experiments based on the magic sandwich (MS) scheme for homo-nuclear dipolar decoupling is proposed. The sequence incorporates a double MS, both on I and S spins and has been named as EXE-MS2. The proposed scheme which has a scaling factor of 1 is observed to be free from low intensity artifacts and provides better line-widths particularly for S spins labeled at multiple sites. The pulse sequence which has been applied on static oriented samples incorporates the EXE scheme where direct polarization of the S spin in the B(0) field is utilized in the place of polarization inversion and is observed to perform well without any loss of sensitivity while ensuring considerable reduction in rf power input into the sample. The EXE scheme has also been tested for solid samples under MAS.
    Solid State Nuclear Magnetic Resonance 04/2008; 33(3):57-63. DOI:10.1016/j.ssnmr.2008.03.001 · 2.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The measurement of hetero-nuclear dipolar coupling using two-dimensional separated local field (SLF-2D) NMR experiments is a powerful technique for the determination of the structure and dynamics of molecules in the solid state and in liquid crystals. However, the experiment is sensitive to a number of factors such as the Hartmann-Hahn match condition, proton frequency off-set and rf heating. It is shown here that by the use of phase alternated pulses during spin-exchange the effect of rf mismatch on the dipolar coupling measurement can be compensated over a wide range of off-sets. Phase alternation together with time and amplitude modulation has also been considered and incorporated into a pulse scheme that combines spin exchange with homonuclear spin decoupling based on magic sandwich sequence and named as SAMPI4. Such time and amplitude averaged nutation experiments use relatively low rf power and generate less sample heating. One of these schemes has been applied on liquid crystal samples and is observed to perform well and yield spectra with high resolution.
    Journal of Magnetic Resonance 08/2008; 194(2):237-44. DOI:10.1016/j.jmr.2008.07.010 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liquid crystalline phase represents a unique state of matter where partial order exists on molecular and supra-molecular levels and is responsible for several interesting properties observed in this phase. Hence a detailed study of ordering in liquid crystals is of significant scientific and technological interest. NMR provides several parameters that can be used to obtain information about the liquid crystalline phase. Of these, the measurement of dipolar couplings between nuclei has proved to be a convenient way of obtaining liquid crystalline ordering since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal. However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbor spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton-proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is presented. Some applications are also highlighted.
    Journal of the Indian Institute of Science 04/2009; 89(2).
Show more