Article

Cross- and axial-peak intensities in 2D-SLF experiments based on cross-polarization--the role of the initial density matrix.

Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Journal of Magnetic Resonance (Impact Factor: 2.3). 05/2007; 185(2):308-17. DOI: 10.1016/j.jmr.2007.01.007
Source: PubMed

ABSTRACT Simulations and experiments on simple oriented systems have been used to estimate the relative ratio of cross-peak to axial-peak intensities in 2D-SLF experiments based on dipolar oscillations during cross-polarization (CP). The density matrix prior to dipolar evolution is considered and for an isolated spin pair, it is shown that direct calculations of the ratios match well with simulations and experimental results. Along with the standard CP pulse sequence, two other pulse sequences namely CP with polarization inversion (PI-CP) and another novel variation of the standard CP experiment (EXE-CP) reported recently have been considered. Inclusion of homonuclear dipolar coupling has been observed to increase the axial-peak intensities. In combination with Lee-Goldburg (LG) decoupling, experiments on an oriented liquid crystalline sample have been carried out and the performance of the pulse schemes have been compared. The applicability of the new pulse sequence for different samples and different nuclei is discussed. Such studies are expected to lead to a better understanding of the experiments and to the design of useful pulse sequences.

0 Bookmarks
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this Letter, we examine magnetization in double- and zero-quantum reservoirs of an ensemble of spin-1/2 nuclei and describe their role in determining the sensitivity of a class of separated local field NMR experiments based on Hartmann–Hahn cross-polarization. We observe that for the liquid crystal system studied, a large dilute spin-polarization, obtained initially by the use of adiabatic cross-polarization, can enhance the sensitivity of the above experiment. The signal enhancement factors, however, are found to vary and depend on the local dynamics. The experimental results have been utilized to obtain the local order-parameters of the system.
    Chemical Physics Letters 01/2012; · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the growing number of membrane protein structures in the Protein Data Bank, there are many transmembrane domains that appear to be native-like; at the same time, there are others that appear to have less than complete native-like character. Hence, there is an increasing need for validation tools that distinguish native-like from non-native-like structures. Membrane mimetics used in protein structural characterizations differ in numerous physicochemical properties from native membranes and provide many opportunities for introducing non-native-like features into membrane protein structures. One possible approach for validating membrane protein structures is based on the use of glycine residues in transmembrane domains. Here, we have reviewed the membrane protein structure database and identified a set of benchmark proteins that appear to be native-like. In these structures, conserved glycine residues rarely face the lipid interstices, and many of them participate in close helix-helix packing. Glycine-based validation allowed the identification of non-native-like features in several membrane proteins and also shows the potential for verifying the native-like character for numerous other membrane protein structures.
    Biochemistry 05/2012; 51(24):4779-89. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measurement of dipolar couplings using separated local field (SLF) NMR experiment is a powerful tool for structural and dynamics studies of oriented molecules such as liquid crystals and membrane proteins in aligned lipid bilayers. Enhancing the sensitivity of such SLF techniques is of significant importance in present-day solid-state NMR methodology. The present study considers the use of adiabatic cross-polarization for this purpose, which is applied for the first time to one of the well-known SLF techniques, namely, polarization inversion spin exchange at the magic angle (PISEMA). The experiments have been carried out on a single crystal of a model peptide, and a dramatic enhancement in signal-to-noise up to 90% has been demonstrated.
    Journal of Physical Chemistry Letters 01/2011; 2(10):1183-1188. · 6.59 Impact Factor