Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction.

Laboratory of Stem Cell Therapy, Center for Experimental Medicine, University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2007; 104(7):2349-54. DOI: 10.1073/pnas.0606238104
Source: PubMed

ABSTRACT One of the central tasks of stem cell biology is to understand the molecular mechanisms that control self-renewal in stem cells. Several cytokines are implicated as crucial regulators of hematopoietic stem cells (HSCs), but little is known about intracellular signaling for HSC self-renewal. To address this issue, we attempted to clarify how self-renewal potential is enhanced in HSCs without the adaptor molecule Lnk, as in Lnk-deficient mice HSCs are expanded in number >10-fold because of their increased self-renewal potential. We show that Lnk negatively regulates self-renewal of HSCs by modifying thrombopoietin (TPO)-mediated signal transduction. Single-cell cultures showed that Lnk-deficient HSCs are hypersensitive to TPO. Competitive repopulation revealed that long-term repopulating activity increases in Lnk-deficient HSCs, but not in WT HSCs, when these cells are cultured in the presence of TPO with or without stem cell factor. Single-cell transplantation of each of the paired daughter cells indicated that a combination of stem cell factor and TPO efficiently induces symmetrical self-renewal division in Lnk-deficient HSCs but not in WT HSCs. Newly developed single-cell immunostaining demonstrated significant enhancement of both p38 MAPK inactivation and STAT5 and Akt activation in Lnk-deficient HSCs after stimulation with TPO. Our results suggest that a balance in positive and negative signals downstream from the TPO signal plays a role in the regulation of the probability of self-renewal in HSCs. In general, likewise, the fate of stem cells may be determined by combinational changes in multiple signal transduction pathways.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular adaptor Lnk (also known as SH2B3) regulates cytokine signals that control lymphohematopoiesis, and Lnk(-/-) mice have expanded B-cell, megakaryocytes and hematopoietic stem-cell populations. Moreover, mutations in the LNK gene are found in patients with myeloproliferative disease, whereas LNK polymorphisms have recently been associated with inflammatory and autoimmune diseases, including celiac disease. Here, we describe a previously-unrecognized function of Lnk in the control of inflammatory CD8(+) T-cell proliferation and in intestinal homeostasis. Mature T cells from newly-generated Lnk-Venus reporter mice had low but substantial expression of Lnk, whereas Lnk expression was down-regulated during homeostatic T-cell proliferation under lymphopenic conditions. The numbers of CD44(hi) IFN-γ(+) CD8(+) effector or memory T cells were found to be increased in Lnk(-/-) mice, which also exhibited shortening of villi in the small intestine. Lnk(-/-) CD8(+) T cells survived longer in response to stimulation with interleukin-15 (IL-15) and proliferated even in non-lymphopenic hosts. Transfer of Lnk(-/-) CD8(+) T cells together with wild-type CD4(+) T cells into Rag2-deficient mice recapitulated a sign of villous abnormality. Our results reveal a link between Lnk and immune cell-mediated intestinal tissue destruction. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 02/2014; · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesion (FA) formation and disassembly play an essential role in adherence and migration of endothelial cells. These processes are highly regulated and involve various signaling molecules that are not yet completely identified. Lnk [Src homology 2-B3 (SH2B3)] belongs to a family of SH2-containing proteins with important adaptor functions. In this study, we showed that Lnk distribution follows that of vinculin, localizing Lnk in FAs. Inhibition of Lnk by RNA interference resulted in decreased spreading, whereas sustained expression dramatically increases the number of focal and cell-matrix adhesions. We demonstrated that Lnk expression impairs FA turnover and cell migration and regulates β1-integrin-mediated signaling via Akt and GSK3β phosphorylation. Moreover, the α-parvin protein was identified as one of the molecular targets of Lnk responsible for impaired FA dynamics and cell migration. Finally, we established the ILK protein as a new molecular partner for Lnk and proposed a model in which Lnk regulates α-parvin expression through its interaction with ILK. Collectively, our results underline the adaptor Lnk as a novel and effective key regulator of integrin-mediated signaling controlling endothelial cell adhesion and migration.
    The FASEB Journal 03/2012; 26(6):2592-606. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might exhaust the stem cell pool, while a shift toward self-renewal might mark the onset of leukemic transformation. A number of transcription factors have been proposed to be critically involved in governing stem cell fate and lineage commitment, such as Hox transcription factors, c-Myc, Notch1, β-catenin, C/ebpα, Pu.1 and STAT5. It is therefore no surprise that dysregulation of these transcription factors can also contribute to the development of leukemias. This review will discuss the role of STAT5 in both normal and leukemic hematopoietic stem cells as well as mechanisms by which STAT5 might contribute to the development of human leukemias.
    JAK-STAT. 01/2012; 1(1):13-22.

Full-text (2 Sources)

Available from
Jun 4, 2014