Article

The p21(Waf1) pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO

Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
Blood (Impact Factor: 10.43). 06/2007; 109(10):4392-8. DOI: 10.1182/blood-2006-03-012575
Source: PubMed

ABSTRACT The 8;21 translocation is a major contributor to acute myeloid leukemia (AML) of the M2 classification occurring in approximately 40% of these cases. Multiple mouse models using this fusion protein demonstrate that AML1-ETO requires secondary mutagenic events to promote leukemogenesis. Here, we show that the negative cell cycle regulator p21(WAF1) gene is up-regulated by AML1-ETO at the protein, RNA, and promoter levels. Retroviral transduction and hematopoietic cell transplantation experiments with p21(WAF1)-deficient cells show that AML1-ETO is able to promote leukemogenesis in the absence of p21(WAF1). Thus, loss of p21(WAF1) facilitates AML1-ETO-induced leukemogenesis, suggesting that mutagenic events in the p21(WAF1) pathway to bypass the growth inhibitory effect from AML1-ETO-induced p21(WAF1) expression can be a significant factor in AML1-ETO-associated acute myeloid leukemia.

0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The core binding factor (CBF) acute myeloid leukemias (AMLs) are a prognostically distinct subgroup that includes patients with the inv(16) and t(8:21) chromosomal rearrangements. Both of these rearrangements result in the formation of fusion proteins, CBFB-MYH11 and AML1-ETO, respectively, that involve members of the CBF family of transcription factors. It has been proposed that both of these fusion proteins function primarily by dominantly repressing normal CBF transcription. However, recent reports have indicted that additional, CBF-repression independent activities may be equally important during leukemogenesis. This article will focus on these recent advances.
    Journal of Cellular Biochemistry 08/2010; 110(5):1039-45. DOI:10.1002/jcb.22596 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic development requires coordinated actions from a variety of transcription factors. The core binding factor (CBF), consisting of a Runx protein and the CBFbeta protein, is a transcription factor complex that is essential for emergence of the hematopoietic stem cell (HSC) from an endothelial cell stage. The hematopoietic defects observed in either Runx1 or CBFbeta knockout mice underscore the necessity of this complex for definitive hematopoiesis. Despite the requirement for CBF in establishing definitive hematopoiesis, Runx1 loss has minimal impact on maintaining the HSC state postnatally, while CBFbeta may continue to be essential. Lineage commitment, on the other hand, is significantly affected upon CBF loss in the adult, indicating a primary role for this complex in modulating differentiation. Given the impact of normal CBF function in the hematopoietic system, the severe consequences of disrupting CBF activity, either through point mutations or generation of fusion genes, are obvious. The physiologic role of CBF in differentiation is subverted to an active process of self-renewal maintenance by the genetic aberrations, through several possible mechanisms, contributing to the development of hematopoietic malignancies including myelodysplastic syndrome and leukemia. The major impact of CBF on the hematopoietic system in both development and disease highlights the need for understanding the intricate functions of this complex and reiterate the necessity of continued efforts to identify potential points of therapeutic intervention for CBF-related diseases.
    Journal of Cellular Physiology 01/2010; 222(1):50-6. DOI:10.1002/jcp.21950 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A role for the RUNX genes in cancer fail-safe processes has been suggested by their induction of senescence-like growth arrest in primary murine fibroblasts and the failure of RAS-induced senescence in Runx2-deficient cells. We now show that RUNX1 induces senescence in human primary fibroblasts. High-affinity DNA binding is necessary but not sufficient, as shown by the functional attenuation of the truncated RUNX1/AML1a isoform and the TEL-RUNX1 fusion oncoprotein. However, a similar phenotype was potently induced by the RUNX1-ETO (AML1-ETO) oncoprotein, despite its dominant-negative potential. A detailed comparison of H-RAS(V12), RUNX1 and RUNX1-ETO senescent phenotypes showed that the RUNX effectors induce earlier growth stasis with only low levels of DNA damage signaling and a lack of chromatin condensation, a marker of irreversible growth arrest. In human fibroblasts, all effectors induced p53 in the absence of detectable p14(Arf), whereas only RUNX1-ETO induced senescence in p16(Ink4a)-null cells. Correlation was noted between induction of p53, reactive oxygen species and phospho-p38, whereas p38(MAPK) inhibition rescued cell growth markedly. These findings indicate a role for replication-independent pathways in RUNX and RUNX1-ETO senescence, and show that the context-specific oncogenic activity of RUNX1 fusion proteins is mirrored in their distinctive interactions with fail-safe responses.
    Oncogene 06/2009; 28(27):2502-12. DOI:10.1038/onc.2009.101 · 8.56 Impact Factor