Article

The p21(Waf1) pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO

Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
Blood (Impact Factor: 9.78). 06/2007; 109(10):4392-8. DOI: 10.1182/blood-2006-03-012575
Source: PubMed

ABSTRACT The 8;21 translocation is a major contributor to acute myeloid leukemia (AML) of the M2 classification occurring in approximately 40% of these cases. Multiple mouse models using this fusion protein demonstrate that AML1-ETO requires secondary mutagenic events to promote leukemogenesis. Here, we show that the negative cell cycle regulator p21(WAF1) gene is up-regulated by AML1-ETO at the protein, RNA, and promoter levels. Retroviral transduction and hematopoietic cell transplantation experiments with p21(WAF1)-deficient cells show that AML1-ETO is able to promote leukemogenesis in the absence of p21(WAF1). Thus, loss of p21(WAF1) facilitates AML1-ETO-induced leukemogenesis, suggesting that mutagenic events in the p21(WAF1) pathway to bypass the growth inhibitory effect from AML1-ETO-induced p21(WAF1) expression can be a significant factor in AML1-ETO-associated acute myeloid leukemia.

0 Followers
 · 
94 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many leukemias result from chromosomal rearrangements. The t(8;21) chromosomal translocation produces AML1-ETO, an oncogenic fusion protein that compromises the function of AML1, a transcription factor critical for myeloid cell differentiation. Because of the pressing need for new therapies in the treatment of acute myleoid leukemia, we investigated the genome-wide occupancy of AML1-ETO in leukemic cells to discover novel regulatory mechanisms involving AML-ETO bound genes. We report the co-localization of AML1-ETO with the N-CoR co-repressor to be primarily on genomic regions distal to transcriptional start sites (TSSs). These regions exhibit over-representation of the motif for PU.1, a key hematopoietic regulator and member of the ETS family of transcription factors. A significant discovery of our study is that genes co-occupied by AML1-ETO and N-CoR (e.g., TYROBP and LAPTM5) are associated with the leukemic phenotype, as determined by analyses of gene ontology and by the observation that these genes are predominantly up-regulated upon AML1-ETO depletion. In contrast, the AML1-ETO/p300 gene network is less responsive to AML1-ETO depletion and less associated with the differentiation block characteristic of leukemic cells. Furthermore, a substantial fraction of AML1-ETO/p300 co-localization occurs near TSSs in promoter regions associated with transcriptionally active loci. Our findings establish a novel and dominant t(8;21) AML leukemia signature characterized by occupancy of AML1-ETO/N-CoR at promoter-distal genomic regions enriched in motifs for myeloid differentiation factors, thus providing mechanistic insight into the leukemic phenotype.
    BMC Genomics 04/2015; 16(1):309. DOI:10.1186/s12864-015-1445-0 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.
    Molecules 11/2014; 19(11):18414-18447. DOI:10.3390/molecules191118414 · 2.10 Impact Factor