Article

Partial13C and15N Chemical-Shift Assignments of the Disulfide-Bond-Forming Enzyme DsbB by 3D Magic-Angle Spinning NMR Spectroscopy

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
ChemBioChem (Impact Factor: 3.06). 03/2007; 8(4):434-42. DOI: 10.1002/cbic.200600484
Source: PubMed

ABSTRACT DsbB is a 20 kDa Escherichia coli inner-membrane protein that catalyzes disulfide-bond formation in periplasmic proteins. We report highly resolved, multidimensional magic-angle spinning NMR spectra at 750 MHz (1)H frequency, which enable partial (13)C and (15)N chemical-shift assignments of the signals. The narrow line widths observed indicate excellent microscopic order of the protein sample, suitable for full structure determination by solid-state NMR. Experiments were performed exclusively on uniformly (13)C,(15)N-labeled DsbB. Chemical-shift-correlation experiments based on dipolar transfer yielded strong signals in the 3D spectra, many of which have been site-specifically assigned to the four transmembrane helices of DsbB. Significant numbers of additional residues have been assigned to stretches of amino acids, although not yet placed in the amino acid sequence. We also report the temperature dependence of signal intensities from -50 degrees C to 0 degrees C, a range over which samples of DsbB are highly stable. Structural and dynamic information derived from SSNMR studies can give insight into DsbB in a state that so far has not been successfully crystallized.

0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the expression, purification, liposome reconstitution and functional validation of uniformly (13)C and (15)N isotope labeled KcsA, a bacterial potassium channel that has high homology with mammalian channels, for solid-state NMR studies. The expression and purification is optimized for an average yield of ∼35-40mg/L of M9 media in a time-efficient way. The protein purity is confirmed by gel electrophoresis and the protein concentration is quantified by UV-vis absorption spectroscopy. Protocols to efficiently reconstitute KcsA into liposomes are also presented. The presence of liposomes is confirmed by cryo-electron microscopy images and the effect of magic angle spinning on liposome packing is shown. High-resolution solid-state NMR spectra of uniformly isotope labeled KcsA in these liposomes reveal that our protocol yields to a very homogenous KcsA sample with high signal to noise and several well-resolved residues in NMR spectra. Electrophysiology of our samples before and after solid-state NMR show that channel function and selectivity remain intact after the solid-state NMR.
    Protein Expression and Purification 08/2013; 91(2). DOI:10.1016/j.pep.2013.07.013 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins of the proteorhodopsin (PR) family are found abundantly in many marine bacteria in the photic zone of the oceans. They are colour-tuned to their environment. The green absorbing species has been shown to act as a light-driven proton pump and thus could form a potential source of energy. The pK(a) of the primary proton acceptor is close to the pH of seawater which could also indicate a regulatory role. Here, we review and summarize our own recent findings in the context of known data and present some new results. Proton transfer in vitro by PR is shown by a fluorescence assay which confirms a pH dependent vectoriality. Previously reported low diffracting 2D crystal preparations of PR are assessed for their use for solid-state NMR by two dimensional (13)C-(13)C DARR spectra. (15)N-(1)H HETCOR MAS NMR experiments show bound water in the vicinity of the protonated Schiff base which could play a role in proton transfer. The effect of highly conserved H75 onto the properties of the chromophore has been investigated by single site mutations. They do show a pronounced effect onto the optical absorption maximum and the pK(a) of the proton acceptor but have only a small effect onto the (15)N chemical shifts of the protonated Schiff base.
    Biochimica et Biophysica Acta 04/2009; 1787(6):697-705. DOI:10.1016/j.bbabio.2009.02.022 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All organisms possess specific cellular machinery that introduces disulfide bonds into proteins newly synthesized and transported out of the cytosol. In E. coli, the membrane-integrated DsbB protein cooperates with ubiquinone to generate a disulfide bond, which is transferred to DsbA, a periplasmic dithiol oxido-reductase that serves as the direct disulfide bond donor to proteins folding oxidatively in this compartment. Despite the extensive accumulation of knowledge on this oxidation system, molecular details of the DsbB reaction mechanisms had been controversial due partly to the lack of structural information until our recent determination of the crystal structure of a DsbA-DsbB-ubiquinone complex. In this review we discuss the structural and chemical nature of reaction intermediates in the DsbB catalysis and the illuminated molecular mechanisms that account for the de novo formation of a disulfide bond and its donation to DsbA. It is suggested that DsbB gains the ability to oxidize its specific substrate, DsbA, having very high redox potential, by undergoing a DsbA-induced rearrangement of cysteine residues. One of the DsbB cysteines that are now reduced then interacts with ubiquinone to form a charge transfer complex, leading to the regeneration of a disulfide at the DsbB active site, and the cycle can begin anew.
    Biochimica et Biophysica Acta 05/2008; 1783(4):520-9. DOI:10.1016/j.bbamcr.2007.11.006 · 4.66 Impact Factor