Article

Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks.

Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria.
Resuscitation (Impact Factor: 4.1). 06/2007; 73(2):253-63. DOI: 10.1016/j.resuscitation.2006.10.002
Source: PubMed

ABSTRACT Targeted defibrillation therapy is needed to optimise survival chances of ventricular fibrillation (VF) patients, but at present VF analysis strategies to optimise defibrillation timing have insufficient predictive power. From 197 patients with in-hospital and out-of-hospital cardiac arrest, 770 electrocardiogram (ECG) recordings of countershock attempts were analysed. Preshock VF ECG features in the time and frequency domain were tested retrospectively for outcome prediction. Using band pass filters, the ECG spectrum was split into various frequency bands of 2-26 Hz bandwidth in the range of 0-26 Hz. Neural networks were used for single feature combinations to optimise prediction of countershock success. Areas under curves (AUC) of receiver operating characteristics (ROC) were used to estimate prediction power of single and combined features. The highest ROC AUC of 0.863 was reached by the median slope in the interval 10-22 Hz resulting in a sensitivity of 95% and a specificity of 50%. The best specificity of 55% at the 95% sensitivity level was reached by power spectrum analysis (PSA) in the 6-26 Hz interval. Neural networks combining single predictive features were unable to increase outcome prediction. Using frequency band segmentation of human VF ECG, several single predictive features with high ROC AUC>0.840 were identified. Combining these single predictive features using neural networks did not further improve outcome prediction in human VF data. This may indicate that various simple VF features, such as median slope already reach the maximum prediction power extractable from VF ECG.

0 Bookmarks
 · 
73 Views
  • Resuscitation 10/2013; · 4.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Survival from out-of-hospital cardiac arrest depends largely on two factors: early cardiopulmonary resuscitation (CPR) and early defibrillation. CPR must be interrupted for a reliable automated rhythm analysis because chest compressions induce artifacts in the ECG. Unfortunately, interrupting CPR adversely affects survival. In the last twenty years, research has been focused on designing methods for analysis of ECG during chest compressions. Most approaches are based either on adaptive filters to remove the CPR artifact or on robust algorithms which directly diagnose the corrupted ECG. In general, all the methods report low specificity values when tested on short ECG segments, but how to evaluate the real impact on CPR delivery of continuous rhythm analysis during CPR is still unknown. Recently, researchers have proposed a new methodology to measure this impact. Moreover, new strategies for fast rhythm analysis during ventilation pauses or high-specificity algorithms have been reported. Our objective is to present a thorough review of the field as the starting point for these late developments and to underline the open questions and future lines of research to be explored in the following years.
    BioMed research international. 01/2014; 2014:386010.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early detection of ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) is crucial for the success of the defibrillation therapy. A wide variety of detection algorithms have been proposed based on temporal, spectral, or complexity parameters extracted from the ECG. However, these algorithms are mostly constructed by considering each parameter individually. In this work, we present a novel life-threatening arrhythmias detection algorithm which combines a number of previously proposed ECG parameters by using support vector machines (SVM) classifiers. A total of 13 parameters were computed accounting for temporal (morphological), spectral, and complexity features of the ECG signal. A filter-type feature selection (FS) procedure was proposed to analyze the relevance of the computed parameters and how they affect the detection performance. The proposed methodology was evaluated in two different binary detection scenarios: shockable (FV plus VT) vs nonshockable arrhythmias, and VF vs nonVF rhythms, using the information contained in the MITDB, the CUDB, and the VFDB. Sensitivity (SE) and specificity (SP) analysis on the out of sample test data showed values of SE= 95%, SP= 99%, and SE= 92%, SP= 97% in the case of shockable and VF scenarios, respectively. Our algorithm was benchmarked against individual detection schemes, significantly improving their performance. Our results demonstrate that the combination of ECG parameters using statistical learning algorithms improves the efficiency for the detection of life-threatening arrhythmias.
    IEEE transactions on bio-medical engineering 11/2013; · 2.15 Impact Factor