Article

Chz1, a nuclear chaperone for histone H2AZ.

Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Molecular Cell (Impact Factor: 14.46). 03/2007; 25(3):357-68. DOI: 10.1016/j.molcel.2006.12.015
Source: PubMed

ABSTRACT The histone variant H2AZ marks nucleosomes flanking the promoters of most genes of budding yeast. The incorporation of H2AZ into chromatin is dependent on the SWR1 complex, which catalyses the replacement of conventional histone H2A with H2AZ. In cells, the pool of unincorporated histone H2AZ has previously been found in association with Nap1, a chaperone for conventional histone H2A-H2B. Here, we report the discovery of Chz1, a histone chaperone that has preference for H2AZ and can also deliver a source of the histone variant for SWR1-dependent histone replacement. Bacterially expressed Chz1 forms a heterotrimer with H2AZ-H2B, stabilizing the association of the histone dimer. We have identified a conserved motif important for histone variant recognition within the H2AZ-interacting domain of Chz1. The presence of this motif in other metazoan proteins suggests that H2AZ-specific chaperones may be widely conserved.

0 Bookmarks
 · 
163 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. Whereas canonical histones package the newly replicated genome, they can be replaced with histone variants that alter nucleosome structure, stability, dynamics, and, ultimately, DNA accessibility. Here we consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states.
    Genes & development 04/2014; 28(7):672-82. · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: H2A.Z is a highly conserved histone variant in all species. The chromatin deposition of H2A.Z is specifically catalyzed by the yeast chromatin remodeling complex SWR1 and its mammalian counterpart SRCAP. However, the mechanism by which H2A.Z is preferentially recognized by non-histone proteins remains elusive. Here we identified Anp32e, a novel higher eukaryote-specific histone chaperone for H2A.Z. Anp32e preferentially associates with H2A.Z-H2B dimers rather than H2A-H2B dimers in vitro and in vivo and dissociates non-nucleosomal aggregates formed by DNA and H2A-H2B. We determined the crystal structure of the Anp32e chaperone domain (186-232) in complex with the H2A.Z-H2B dimer. In this structure, the region containing Anp32e residues 214-224, which is absent in other Anp32 family proteins, specifically interacts with the extended H2A.Z αC helix, which exhibits an unexpected conformational change. Genome-wide profiling of Anp32e revealed a remarkable co-occupancy between Anp32e and H2A.Z. Cells overexpressing Anp32e displayed a strong global H2A.Z loss at the +1 nucleosomes, whereas cells depleted of Anp32e displayed a moderate global H2A.Z increase at the +1 nucleosomes. This suggests that Anp32e may help to resolve the non-nucleosomal H2A.Z aggregates and also facilitate the removal of H2A.Z at the +1 nucleosomes, and the latter may help RNA polymerase II to pass the first nucleosomal barrier.Cell Research advance online publication 11 March 2014; doi:10.1038/cr.2014.30.
    Cell Research 03/2014; · 11.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone variant H2A.Z-containing nucleosomes exist at most eukaryotic promoters and play important roles in gene transcription and genome stability. The multisubunit nucleosome-remodeling enzyme complex SWR1, conserved from yeast to mammals, catalyzes the ATP-dependent replacement of histone H2A in canonical nucleosomes with H2A.Z. How SWR1 catalyzes the replacement reaction is largely unknown. Here, we determined the crystal structure of the N-terminal region (599-627) of the catalytic subunit Swr1, termed Swr1-Z domain, in complex with the H2A.Z-H2B dimer at 1.78 Å resolution. The Swr1-Z domain forms a 310 helix and an irregular chain. A conserved LxxLF motif in the Swr1-Z 310 helix specifically recognizes the αC helix of H2A.Z. Our results show that the Swr1-Z domain can deliver the H2A.Z-H2B dimer to the DNA-(H3-H4)2 tetrasome to form the nucleosome by a histone chaperone mechanism.
    Molecular cell 02/2014; 53(3):498-505. · 14.46 Impact Factor