Chz1, a Nuclear Chaperone for Histone H2AZ

Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Molecular Cell (Impact Factor: 14.02). 03/2007; 25(3):357-68. DOI: 10.1016/j.molcel.2006.12.015
Source: PubMed


The histone variant H2AZ marks nucleosomes flanking the promoters of most genes of budding yeast. The incorporation of H2AZ into chromatin is dependent on the SWR1 complex, which catalyses the replacement of conventional histone H2A with H2AZ. In cells, the pool of unincorporated histone H2AZ has previously been found in association with Nap1, a chaperone for conventional histone H2A-H2B. Here, we report the discovery of Chz1, a histone chaperone that has preference for H2AZ and can also deliver a source of the histone variant for SWR1-dependent histone replacement. Bacterially expressed Chz1 forms a heterotrimer with H2AZ-H2B, stabilizing the association of the histone dimer. We have identified a conserved motif important for histone variant recognition within the H2AZ-interacting domain of Chz1. The presence of this motif in other metazoan proteins suggests that H2AZ-specific chaperones may be widely conserved.

Download full-text


Available from: Subhojit Sen, Sep 16, 2015
1 Follower
32 Reads
  • Source
    • "Earlier work has shown that the structures of H2A-and H2A.Z-containing nucleosomes show prominent differences in the region C-terminal to the histone-fold domain (Suto et al., 2000). This C-terminal region is important for binding of the free H2A.Z-H2B dimer to specific chaperones (Luk et al., 2007; Zhou et al., 2008; Hong et al., 2014), and for effector interactions postincorporation (Clarkson et al., 1999; Adam et al., 2001). For histone H2A.Z replacement, our analysis shows that SWR1 utilizes other unique and conserved features of the H2A nucleosome for substrate specificity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The histone variant H2A.Z is a universal mark of gene promoters, enhancers and regulatory elements in eukaryotic chromatin. The chromatin remodeler SWR1 mediates site-specific incorporation of H2A.Z by a multi-step histone replacement reaction, evicting histone H2A-H2B from the canonical nucleosome and depositing the H2A.Z-H2B dimer. Binding of both substrates-the canonical nucleosome and the H2A.Z-H2B dimer, is essential for activation of SWR1. We found that SWR1 primarily recognizes key residues within the α2 helix in the histone-fold of nucleosomal histone H2A, a region not previously known to influence remodeler activity. Moreover, SWR1 interacts preferentially with nucleosomal DNA at superhelix location 2 on the nucleosome face distal to its linker-binding site. Our findings provide new molecular insights on recognition of the canonical nucleosome by a chromatin remodeler, and have implications for ATP-driven mechanisms of histone eviction and deposition.
    eLife Sciences 06/2015; 4. DOI:10.7554/eLife.06845 · 9.32 Impact Factor
  • Source
    • "Chz1 is an important component of SWR1-dependent Htz1 replacement. It is a Htz1–H2B-specific chaperone that delivers Htz1 for H2A substitution [18]. It is relatively unstructured in solution, but it becomes structured in complex with the Htz1–H2B histone dimer [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1-H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1-H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3-H4)2 tetramers, H2A-H2B dimers and Htz1-H2B dimers. Nap1 can bind H2A-H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone-DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin.
    Bioscience Reports 09/2014; 34(5). DOI:10.1042/BSR20140092 · 2.64 Impact Factor
  • Source
    • "Anp32e contains long acidic stretches that are rich in Glu/Asp residues. These residues are likely involved in histone interaction, as reported for other histone chaperones26. In our study, Anp32e dissociates non-nucleosomal aggregates formed by DNA and H2A.Z. "
    [Show abstract] [Hide abstract]
    ABSTRACT: H2A.Z is a highly conserved histone variant in all species. The chromatin deposition of H2A.Z is specifically catalyzed by the yeast chromatin remodeling complex SWR1 and its mammalian counterpart SRCAP. However, the mechanism by which H2A.Z is preferentially recognized by non-histone proteins remains elusive. Here we identified Anp32e, a novel higher eukaryote-specific histone chaperone for H2A.Z. Anp32e preferentially associates with H2A.Z-H2B dimers rather than H2A-H2B dimers in vitro and in vivo and dissociates non-nucleosomal aggregates formed by DNA and H2A-H2B. We determined the crystal structure of the Anp32e chaperone domain (186-232) in complex with the H2A.Z-H2B dimer. In this structure, the region containing Anp32e residues 214-224, which is absent in other Anp32 family proteins, specifically interacts with the extended H2A.Z αC helix, which exhibits an unexpected conformational change. Genome-wide profiling of Anp32e revealed a remarkable co-occupancy between Anp32e and H2A.Z. Cells overexpressing Anp32e displayed a strong global H2A.Z loss at the +1 nucleosomes, whereas cells depleted of Anp32e displayed a moderate global H2A.Z increase at the +1 nucleosomes. This suggests that Anp32e may help to resolve the non-nucleosomal H2A.Z aggregates and also facilitate the removal of H2A.Z at the +1 nucleosomes, and the latter may help RNA polymerase II to pass the first nucleosomal barrier.Cell Research advance online publication 11 March 2014; doi:10.1038/cr.2014.30.
    Cell Research 03/2014; 24(4). DOI:10.1038/cr.2014.30 · 12.41 Impact Factor
Show more