Article

A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway.

Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Cell (Impact Factor: 31.96). 03/2007; 128(3):519-31. DOI: 10.1016/j.cell.2006.12.032
Source: PubMed

ABSTRACT Yeast cells arrest in the G1 phase of the cell cycle upon exposure to mating pheromones. As cells commit to a new cycle, G1 CDK activity (Cln/CDK) inhibits signaling through the mating MAPK cascade. Here we show that the target of this inhibition is Ste5, the MAPK cascade scaffold protein. Cln/CDK disrupts Ste5 membrane localization by phosphorylating a cluster of sites that flank a small, basic, membrane-binding motif in Ste5. Effective inhibition of Ste5 signaling requires multiple phosphorylation sites and a substantial accumulation of negative charge, which suggests that Ste5 acts as a sensor for high G1 CDK activity. Thus, Ste5 is an integration point for both external and internal signals. When Ste5 cannot be phosphorylated, pheromone triggers an aberrant arrest of cells outside G1 either in the presence or absence of the CDK-inhibitor protein Far1. These findings define a mechanism and physiological benefit of restricting antiproliferative signaling to G1.

0 Bookmarks
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we report on a novel PCR targeting-based strategy called 'PCR duplication' that enables targeted duplications of genomic regions in the yeast genome using a simple PCR-based approach. To demonstrate its application we first duplicated the promoter of the FAR1 gene in yeast and simultaneously inserted a GFP downstream of it. This created a reporter for promoter activity while leaving the FAR1 gene fully intact. In another experiment, we used PCR duplication to increase the dosage of a gene in a discrete manner, from 1× to 2x. Using TUB4, the gene encoding for the yeast γ-tubulin, we validated that this led to corresponding increases in the levels of mRNA and protein. PCR duplication is an easy one-step procedure that can be adapted in different ways to permit rapid, disturbance-free investigation of various genomic regulatory elements without the need for ex vivo cloning.
    PLoS ONE 01/2014; 9(12):e114590. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most proteins are regulated by posttranslational modifications and changes in these modifications contribute to evolutionary changes as well as to human diseases. Phosphorylation of serines, threonines, and tyrosines are the most common modifications identified to date in eukaryotic proteomes. While the mode of action and the function of most phosphorylation sites remain unknown, functional studies have shown that phosphorylation affects protein stability, localization and ability to interact. Two broad modes of action have been described for protein phosphorylation. The first mode corresponds to the canonical and qualitative view whereby single phosphorylation sites act as molecular switches that either turn on or off specific protein functions through direct or allosteric effects. The second mode is more akin to a rheostat than a switch. In this case, a group of phosphorylation sites in a given protein region contributes collectively to the modification of the protein, irrespective of the precise position of individual sites, through an aggregate property. Here we discuss these two types of regulation and examine how they affect the rate and patterns of protein phosphorylation evolution. We describe how the evolution of clusters of phosphorylation sites can be studied under the framework of complex traits evolution and stabilizing selection.
    Frontiers in Genetics 01/2014; 5:245.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphate plays a chemically unique role in shaping cellular signaling of all current living systems, especially eukaryotes. Protein phosphorylation has been studied at several levels, from the near-site context, both in sequence and structure, to the crowded cellular environment, and ultimately to the systems-level perspective. Despite the tremendous advances in mass spectrometry and efforts dedicated to the development of ad hoc highly sophisticated methods, phosphorylation site inference and associated kinase identification are still unresolved problems in kinome biology. The sequence and structure of the substrate near-site context are not sufficient alone to model the in vivo phosphorylation rules, and they should be integrated with orthogonal information in all possible applications. Here we provide an overview of the different contexts that contribute to protein phosphorylation, discussing their potential impact in phosphorylation site annotation and in predicting kinase-substrate specificity.
    Frontiers in Genetics 01/2014; 5:315.

Full-text

Download
0 Downloads
Available from