qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data.

Center for Medical Genetics, Ghent University Hospital, De Pintelaan, B-9000 Ghent, Belgium.
Genome biology (Impact Factor: 10.47). 02/2007; 8(2):R19. DOI: 10.1186/gb-2007-8-2-r19
Source: PubMed

ABSTRACT Although quantitative PCR (qPCR) is becoming the method of choice for expression profiling of selected genes, accurate and straightforward processing of the raw measurements remains a major hurdle. Here we outline advanced and universally applicable models for relative quantification and inter-run calibration with proper error propagation along the entire calculation track. These models and algorithms are implemented in qBase, a free program for the management and automated analysis of qPCR data.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant defense responses are made up of broad plant defense mechanisms that involve an integrated signaling path-way. Powdery mildew caused by Erysiphe pisi is one of the most important diseases of pea. However, the mechanisms and pathways involved in the resistance against E. pisi are yet undiscovered. We studied the transcriptome of two Medicago truncatula genotypes, the powdery mildew susceptible com-mercial variety Parabinga and the resistant accession SA1306, at 4 and 12 h after E. pisi infection, using Mt16kOLI1 micro-arrays. Four hundred and forty six probes were differentially expressed between the two M. truncatula genotypes along the time points studied. RNA accumulation patterns suggest that the most prominent responses to pathogen infection occur at early infection stages. Most of the regulated genes are related to cell wall reinforcement, flavonoid, and phenylpropanoid biosynthesis. In addition, pathogenesis-related proteins and signaling pathways controlled by jasmonic acid and salicylic acid were found to be regulated during pathogen infection. This study provides the first comprehensive view of the genes and pathways activated in the E. pisi/M. truncatula pathosystem, allowing the identification of targets against this important disease.
    Plant Molecular Biology Reporter 08/2014; · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low birth weight (LBW) is associated with increased risk of adult cardiovascular disease and this association may be partly a consequence of early programming of the renin-angiotensin system (RAS). We investigated the effects of LBW on expression of molecules in the RAS and cardiac tissue remodeling. Left ventricular samples were collected from the hearts of 21 days old lambs that were born average birth weight (ABW) and LBW. Cardiac mRNA expression was quantified using real-time RT-PCR and protein expression was quantified using Western blotting. DNA methylation and histone acetylation were assessed by combined bisulfite restriction analysis and chromatin immunoprecipitation, respectively. There were increased plasma renin activity, angiotensin I (ANGI), and ANGII concentrations in LBW compared to ABW lambs at day 20. In LBW lambs, there was increased expression of cardiac ACE2 mRNA, decreased ANGII receptor type 1 (AT1R) protein, and acetylation of histone H3K9 of the AT1R promoter but no changes in AT1R mRNA expression and AT1R promoter DNA methylation. There was no difference in the abundance of proteins involved in autophagy or fibrosis. BIRC5 and VEGF mRNA expression was increased; however, the total length of the capillaries was decreased in the hearts of LBW lambs. Activation of the circulating and local cardiac RAS in neonatal LBW lambs may be expected to increase cardiac fibrosis, autophagy, and capillary length. However, we observed only a decrease in total capillary length, suggesting a dysregulation of the RAS in the heart of LBW lambs and this may have significant implications for heart health in later life. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
    Physiological reports. 02/2015; 3(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: House dust mites are a major source of allergy worldwide. While diagnosis and treatment based on mite extracts have remarkably advanced, little information exists on the expression of allergens in mites. We have studied gene expression of eight Dermatophagoides pteronyssinus (Trouessart) (Acari: Pyroglyphidae) allergens (Der p 1, 2, 3, 4, 5, 7, 10 and 21). All allergens showed higher transcription in nymphs compared with larvae or adults, with the only exception of Der p 10. The transcription of Der p 4 and Der p 10, together with the transcription and protein ratios Der p 1 to Der p 2, were higher in males than in females. One-week exposure of mite cultures to 16 or 35 °C (versus 24 °C) or low RH (44% versus 76%) significantly influenced the allergen gene transcription profile. Our results demonstrate that allergen expression is quantitatively and/or qualitatively influenced by mite development and sex, as well as by the environment. We suggest that monitoring allergen gene expression may be a useful tool to assist the optimization of mite cultures in the production of standardized allergenic extracts for clinical use. © 2015 The Royal Entomological Society.
    Medical and Veterinary Entomology 01/2015; · 2.33 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014