Article

Sodium-activated Potassium Current in Guinea pig Gastric Myocytes

Department of Physiology, Chungbuk National University, College of Medicine, Cheongju, Korea.
Journal of Korean Medical Science (Impact Factor: 1.25). 03/2007; 22(1):57-62. DOI: 10.3346/jkms.2007.22.1.57
Source: PubMed

ABSTRACT This study was designed to identify and characterize Na+-activated K+ current (I(K(Na))) in guinea pig gastric myocytes under whole-cell patch clamp. After whole-cell configuration was established under 110 mM intracellular Na+ concentration ([Na+]i) at holding potential of -60 mV, a large inward current was produced by external 60 mM K+([K+]degrees). This inward current was not affected by removal of external Ca2+. K+ channel blockers had little effects on the current (p>0.05). Only TEA (5 mM) inhibited steady-state current to 68+/-2.7% of the control (p<0.05). In the presence of K+ channel blocker cocktail (mixture of Ba2+, glibenclamide, 4-AP, apamin, quinidine and TEA), a large inward current was activated. However, the amplitude of the steady-state current produced under [K+]degrees (140 mM) was significantly smaller when Na+ in pipette solution was replaced with K+- and Li+ in the presence of K+ channel blocker cocktail than under 110 mM [Na+]i. In the presence of K+ channel blocker cocktail under low Cl- pipette solution, this current was still activated and seemed K+-selective, since reversal potentials (E(rev)) of various concentrations of [K+]degrees-induced current in current/voltage (I/V) relationship were nearly identical to expected values. R-56865 (10-20 microM), a blocker of I(K(Na)), completely and reversibly inhibited this current. The characteristics of the current coincide with those of I(K(Na)) of other cells. Our results indicate the presence of I(K(Na)) in guinea pig gastric myocytes.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K(+) channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways.
    Korean Journal of Physiology and Pharmacology 10/2014; 18(5):425-30. DOI:10.4196/kjpp.2014.18.5.425 · 1.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.
    Journal of Membrane Biology 06/2012; 245(11). DOI:10.1007/s00232-012-9425-7 · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of non-selective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function.
    04/2013; 2013(2013). DOI:10.1155/2013/354262
    This article is viewable in ResearchGate's enriched format

Preview (2 Sources)

Download
0 Downloads
Available from