Article

A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds.

Department of Oncology and Neurosciences, University G. D'Annunzio Medical School & Foundation, 66013 Chieti, Italy, and Division of Immunogenetics, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina.
Glycobiology (Impact Factor: 3.75). 06/2007; 17(5):541-52. DOI: 10.1093/glycob/cwm014
Source: PubMed

ABSTRACT The anti-inflammatory, antiangiogenic, anticoagulant, and antiadhesive properties of fucoidans obtained from nine species of brown algae were studied in order to examine the influence of fucoidan origin and composition on their biological activities. All fucoidans inhibited leucocyte recruitment in an inflammation model in rats, and neither the content of fucose and sulfate nor other structural features of their polysaccharide backbones significantly affected the efficacy of fucoidans in this model. In vitro evaluation of P-selectin-mediated neutrophil adhesion to platelets under flow conditions revealed that only polysaccharides from Laminaria saccharina, L. digitata, Fucus evanescens, F. serratus, F. distichus, F. spiralis, and Ascophyllum nodosum could serve as P-selectin inhibitors. All fucoidans, except that from Cladosiphon okamuranus carrying substantial levels of 2-O-alpha-D-glucuronopyranosyl branches in the linear (1-->3)-linked poly-alpha-fucopyranoside chain, exhibited anticoagulant activity as measured by activated partial thromboplastin time whereas only fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. evanescens displayed strong antithrombin activity in a platelet aggregation test. The last fucoidans potently inhibited human umbilical vein endothelial cell (HUVEC) tubulogenesis in vitro and this property correlated with decreased levels of plasminogen-activator inhibitor-1 in HUVEC supernatants, suggesting a possible mechanism of fucoidan-induced inhibition of tubulogenesis. Finally, fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. vesiculosus strongly blocked MDA-MB-231 breast carcinoma cell adhesion to platelets, an effect which might have critical implications in tumor metastasis. The data presented herein provide a new rationale for the development of potential drugs for thrombosis, inflammation, and tumor progression.

Full-text

Available from: Nikolay E Nifantiev, May 31, 2015
2 Followers
 · 
216 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to examine the absorption of fucoidan through the intestinal tract. Fucoidan (0.1, 0.5, 1.0, 1.5 and 2.0 mg/mL) was added to Transwell inserts containing Caco-2 cells. The transport of fucoidan across Caco-2 cells increased in a dose-dependent manner up to 1.0 mg/mL. It reached a maximum after 1 h and then rapidly decreased. In another experiment, rats were fed standard chow containing 2% fucoidan for one or two weeks. Immunohistochemical staining revealed that fucoidan accumulated in jejunal epithelial cells, mononuclear cells in the jejunal lamina propria and sinusoidal non-parenchymal cells in the liver. Since we previously speculated that nitrosamine may enhance the intestinal absorption of fucoidan, its absorption was estimated in rats administered N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in their drinking water. Rats were fed 0.2% fucoidan chow (BBN + 0.2% fucoidan rats), 2% fucoidan chow (BBN + 2% fucoidan rats) and standard chow for eight weeks. The uptake of fucoidan through the intestinal tract seemed to be low, but was measurable by our ELISA method. Fucoidan-positive cells were abundant in the small intestinal mucosa of BBN + 2% fucoidan rats. Most fucoidan-positive cells also stained positive for ED1, suggesting that fucoidan was incorporated into intestinal macrophages. The uptake of fucoidan by Kupffer cells was observed in the livers of BBN + 2% fucoidan rats. In conclusion, the absorption of fucoidan through the small intestine was demonstrated both in vivo and in vitro.
    Marine Drugs 01/2014; 13(1):48-64. DOI:10.3390/md13010048 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fucoidan, a sulfated polysaccharide purified from brown algae, has a variety of immune-modulation effects, such as promoting activation of dendritic cells (DCs), natural killer (NK) cells and T cells, and enhancing anti-viral and anti-tumor responses. However, the immune-modulatory effect of fucoidan from different seaweed extracts has not been thoroughly analyzed and compared. We analyzed fucoidans obtained from Ascophyllum nodosum (A. nodosum), Macrocystis pyrifera (M. pyrifera), Undaria pinnatifida (U. pinnatifida) and Fucus vesiculosus (F. vesiculosus) for their effect on the apoptosis of human neutrophils, activation of mouse NK cells, maturation of spleen DCs, proliferation and activation of T cells, and the adjuvant effect in vivo. Fucoidans from M. pyrifera and U. pinnatifida strongly delayed human neutrophil apoptosis at low concentration, whereas fucoidans from A. nodosum and F. vesiculosus delayed human neutrophil apoptosis at higher concentration. Moreover, fucoidan from M. pyrifera promoted NK cell activation and cytotoxic activity against YAC-1 cells. In addition, M. pyrifera fucoidan induced the strongest activation of spleen DCs and T cells and ovalbumin (OVA) specific immune responses compared to other fucoidans. These data suggest that fucoidan from M. pyrifera can be potentially useful as a therapeutic agent for infectious diseases, cancer and an effective adjuvant for vaccine.
    Marine Drugs 03/2015; 13(3):1084-104. DOI:10.3390/md13031084 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fucoidan is a sulfated polysaccharide found mainly in various species of brown algae and brown seaweed. Here, we investigated the effects of low-molecular-weight (LMW) fucoidan (4 kDa) on interleukin-1beta (IL-1β)-stimulated rheumatoid arthritis fibroblast-like synoviocyte (RAFLS). 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and annexin V/propidium iodide assay were used to assess cell viability and apoptosis, respectively. Transwell assay was performed to evaluate cell invasion. Reverse transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay analysis was done to measure gene expression and secretion. Nuclear factor-kappa B (NF-κB) DNA binding activity was determined by electrophoretic mobility shift assay. LMW fucoidan dose-dependently inhibited the viability and induced apoptosis of IL-1β-treated RAFLS. Fucoidan attenuated IL-1β-induced invasion of RAFLS and decreased the expression and secretion of metalloproteinase (MMP)-1, MMP-3, and MMP-9. Fucoidan suppressed NF-κB binding activity, p65 nuclear translocation, and IκB-α degradation in IL-1β-stimulated RAFLS. Additionally, IL-1β-induced phosphorylation of p38 but not ERK or JNK was significantly impaired by fucoidan treatment. LMW fucoidan reduces the viability, survival, and invasiveness of IL-1β-treated RAFLS, which is associated with inhibition of NF-κB and p38 activation. LMW fucoidan may have therapeutic potential in the treatment of rheumatoid arthritis.
    Inflammation 03/2015; DOI:10.1007/s10753-015-0155-8 · 1.92 Impact Factor