Article

Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function.

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America.
PLoS Biology (Impact Factor: 11.77). 03/2007; 5(2):e35. DOI: 10.1371/journal.pbio.0050035
Source: PubMed

ABSTRACT Identification of common mechanistic principles that shed light on the action of the many chemically diverse toxicants to which we are exposed is of central importance in understanding how toxicants disrupt normal cellular function and in developing more effective means of protecting against such effects. Of particular importance is identifying mechanisms operative at environmentally relevant toxicant exposure levels. Chemically diverse toxicants exhibit striking convergence, at environmentally relevant exposure levels, on pathway-specific disruption of receptor tyrosine kinase (RTK) signaling required for cell division in central nervous system (CNS) progenitor cells. Relatively small toxicant-induced increases in oxidative status are associated with Fyn kinase activation, leading to secondary activation of the c-Cbl ubiquitin ligase. Fyn/c-Cbl pathway activation by these pro-oxidative changes causes specific reductions, in vitro and in vivo, in levels of the c-Cbl target platelet-derived growth factor receptor-alpha and other c-Cbl targets, but not of the TrkC RTK (which is not a c-Cbl target). Sequential Fyn and c-Cbl activation, with consequent pathway-specific suppression of RTK signaling, is induced by levels of methylmercury and lead that affect large segments of the population, as well as by paraquat, an organic herbicide. Our results identify a novel regulatory pathway of oxidant-mediated Fyn/c-Cbl activation as a shared mechanism of action of chemically diverse toxicants at environmentally relevant levels, and as a means by which increased oxidative status may disrupt mitogenic signaling. These results provide one of a small number of general mechanistic principles in toxicology, and the only such principle integrating toxicology, precursor cell biology, redox biology, and signaling pathway analysis in a predictive framework of broad potential relevance to the understanding of pro-oxidant-mediated disruption of normal development.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the involvement of genetic abnormalities in autism spectrum disorders (ASD) is well-accepted, recent studies point to an equal contribution by environmental factors, particularly environmental toxicants. However, these toxicant-related studies in ASD have not been systematically reviewed to date. Therefore, we compiled publications investigating potential associations between environmental toxicants and ASD and arranged these publications into the following three categories: (a) studies examining estimated toxicant exposures in the environment during the preconceptional, gestational and early childhood periods; (b) studies investigating biomarkers of toxicants; and (c) studies examining potential genetic susceptibilities to toxicants. A literature search of nine electronic scientific databases through November 2013 was performed. In the first category examining ASD risk and estimated toxicant exposures in the environment, the majority of studies (34/37; 92%) reported an association. Most of these studies were retrospective case-control, ecological or prospective cohort studies, although a few had weaker study designs (for example, case reports or series). Toxicants implicated in ASD included pesticides, phthalates, polychlorinated biphenyls (PCBs), solvents, toxic waste sites, air pollutants and heavy metals, with the strongest evidence found for air pollutants and pesticides. Gestational exposure to methylmercury (through fish exposure, one study) and childhood exposure to pollutants in water supplies (two studies) were not found to be associated with ASD risk. In the second category of studies investigating biomarkers of toxicants and ASD, a large number was dedicated to examining heavy metals. Such studies demonstrated mixed findings, with only 19 of 40 (47%) case-control studies reporting higher concentrations of heavy metals in blood, urine, hair, brain or teeth of children with ASD compared with controls. Other biomarker studies reported that solvent, phthalate and pesticide levels were associated with ASD, whereas PCB studies were mixed. Seven studies reported a relationship between autism severity and heavy metal biomarkers, suggesting evidence of a dose-effect relationship. Overall, the evidence linking biomarkers of toxicants with ASD (the second category) was weaker compared with the evidence associating estimated exposures to toxicants in the environment and ASD risk (the first category) because many of the biomarker studies contained small sample sizes and the relationships between biomarkers and ASD were inconsistent across studies. Regarding the third category of studies investigating potential genetic susceptibilities to toxicants, 10 unique studies examined polymorphisms in genes associated with increased susceptibilities to toxicants, with 8 studies reporting that such polymorphisms were more common in ASD individuals (or their mothers, 1 study) compared with controls (one study examined multiple polymorphisms). Genes implicated in these studies included paraoxonase (PON1, three of five studies), glutathione S-transferase (GSTM1 and GSTP1, three of four studies), δ-aminolevulinic acid dehydratase (one study), SLC11A3 (one study) and the metal regulatory transcription factor 1 (one of two studies). Notably, many of the reviewed studies had significant limitations, including lack of replication, limited sample sizes, retrospective design, recall and publication biases, inadequate matching of cases and controls, and the use of nonstandard tools to diagnose ASD. The findings of this review suggest that the etiology of ASD may involve, at least in a subset of children, complex interactions between genetic factors and certain environmental toxicants that may act synergistically or in parallel during critical periods of neurodevelopment, in a manner that increases the likelihood of developing ASD. Because of the limitations of many of the reviewed studies, additional high-quality epidemiological studies concerning environmental toxicants and ASD are warranted to confirm and clarify many of these findings.
    Translational psychiatry. 02/2014; 4:e360.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.
    Schizophrenia Research 07/2014; · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Instances of sustained oxidative activity have been shown to involve dysregulation of Nrf2-mediated transcriptional induction; however, mechanisms warranting Nrf2-repression remain unclear. In this study, using primary rat hepatocytes, we have attempted to identify factors that may negatively influence Nrf2 survival pathway. Though studies indicate a conspicuous association between Akt and Nrf2, a confirmatory link between the two is unaddressed. On inhibiting PI3K/Akt pathway, we observed compromised activities of antioxidant and detoxification enzymes culminating in oxidative cytotoxicity. This was accompanied by reduced nuclear retention of Nrf2 and its ARE binding affinity, increased Nrf2 ubiquitination and concurrent decline in its downstream targets. Moreover, Akt inhibition enhanced nuclear translocation as well as phosphorylation of Fyn kinase, an enzyme linked to Nrf2 degradation, by relieving GSK3β from phosphorylation-mediated repression. The involvement of Akt and Fyn kinase in influencing Nrf2 signaling was further confirmed in oxidatively stressed hepatocytes by using tert-butyl hydroperoxide (tBHP). tBHP-induced decrease in Nrf2 levels was associated with enhanced Fyn kinase phosphorylation, Fyn kinase nuclear translocation and decreased levels of phosphorylated GSK3β(Ser9) in a time-dependent manner. Interestingly, tBHP induced site-specific deactivation of Akt as only Akt(Ser473) phosphorylation was observed to be affected. Further, protein expression as well as nuclear localization of PHLPP2, a phosphatase specific for Akt(Ser473), was found to be significantly enhanced in tBHP-stressed hepatocytes. Silencing of PHLPP2 not only resulted in considerable restoration of Nrf2 signaling, enhanced Nrf2-ARE binding and reduced Nrf2 ubiquitination but also significantly suppressed tBHP-induced ROS generation and alterations in mitochondrial permeability. We infer that cellular PHLPP2 levels may aggravate oxidative toxicity by suppressing Nrf2/ARE transcriptional regulation via Akt(Se473)/GSK3β/Fyn kinase axis. The study indicates that PHLPP2 could serve as a new target for developing strategies to manage pathological conditions exacerbated due to oxidative stress.
    Cell Death & Disease 03/2014; 5:e1153. · 5.18 Impact Factor

Full-text (2 Sources)

Download
50 Downloads
Available from
Jun 1, 2014