Article

Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function.

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America.
PLoS Biology (Impact Factor: 11.77). 03/2007; 5(2):e35. DOI: 10.1371/journal.pbio.0050035
Source: PubMed

ABSTRACT Identification of common mechanistic principles that shed light on the action of the many chemically diverse toxicants to which we are exposed is of central importance in understanding how toxicants disrupt normal cellular function and in developing more effective means of protecting against such effects. Of particular importance is identifying mechanisms operative at environmentally relevant toxicant exposure levels. Chemically diverse toxicants exhibit striking convergence, at environmentally relevant exposure levels, on pathway-specific disruption of receptor tyrosine kinase (RTK) signaling required for cell division in central nervous system (CNS) progenitor cells. Relatively small toxicant-induced increases in oxidative status are associated with Fyn kinase activation, leading to secondary activation of the c-Cbl ubiquitin ligase. Fyn/c-Cbl pathway activation by these pro-oxidative changes causes specific reductions, in vitro and in vivo, in levels of the c-Cbl target platelet-derived growth factor receptor-alpha and other c-Cbl targets, but not of the TrkC RTK (which is not a c-Cbl target). Sequential Fyn and c-Cbl activation, with consequent pathway-specific suppression of RTK signaling, is induced by levels of methylmercury and lead that affect large segments of the population, as well as by paraquat, an organic herbicide. Our results identify a novel regulatory pathway of oxidant-mediated Fyn/c-Cbl activation as a shared mechanism of action of chemically diverse toxicants at environmentally relevant levels, and as a means by which increased oxidative status may disrupt mitogenic signaling. These results provide one of a small number of general mechanistic principles in toxicology, and the only such principle integrating toxicology, precursor cell biology, redox biology, and signaling pathway analysis in a predictive framework of broad potential relevance to the understanding of pro-oxidant-mediated disruption of normal development.

0 Followers
 · 
116 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/ßpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of non-transformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Moreover, our work provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes and protein degradation critical to our discoveries. Copyright © 2014. Published by Elsevier Inc.
    Free Radical Biology and Medicine 12/2014; 79. DOI:10.1016/j.freeradbiomed.2014.10.860 · 5.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deoxynivalenol (DON) is a Fusarium toxin that causes a variety of toxic effects with symptoms such as diarrhoea and low weight gain. To date, no review has addressed the toxicity of DON in relation to oxidative stress. The focus of this article is primarily intended to summarize the information associated with oxidative stress as a plausible mechanism for DON-induced toxicity. The present review shows that over the past two decades, several investigators have documented the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in oxidative stress as a result of DON treatment and have correlated them with various types of toxicity. The evidence for induction of an oxidative stress response resulting from DON exposure has been more focused on in vitro models and is relatively lacking in in vivo studies. Hence, more emphasis should be laid on in vivo investigations with doses that are commonly encountered in food products. Since DON is commonly found in food and feed, the cellular effects of this toxin in relation to oxidative stress, as well as effective measures to combat its toxicity, are important aspects to be considered for future studies.
    Food and Chemical Toxicology 07/2014; 72. DOI:10.1016/j.fct.2014.06.027 · 2.61 Impact Factor

Full-text (2 Sources)

Download
53 Downloads
Available from
Jun 1, 2014