Campellone, K. G. et al. Increased adherence and actin pedestal formation by dam-deficient enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 63, 1468-1481

Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
Molecular Microbiology (Impact Factor: 4.42). 04/2007; 63(5):1468-81. DOI: 10.1111/j.1365-2958.2007.05602.x
Source: PubMed


Enterohaemorrhagic Escherichia coli (EHEC) are highly infectious pathogens capable of causing severe diarrhoeal illnesses. As a critical step during their colonization, EHEC adhere intimately to intestinal epithelial cells and generate F-actin 'pedestal' structures that elevate them above surrounding cell surfaces. Intimate adhesion and pedestal formation result from delivery of the EHEC type III secretion system (TTSS) effector proteins Tir and EspF(U) into the host cell and expression of the bacterial outer membrane adhesin, intimin. To investigate a role for DNA methylation during the regulation of adhesion and pedestal formation in EHEC, we deleted the dam (DNA adenine methyltransferase) gene from EHEC O157:H7 and demonstrate that this mutation results in increased interactions with cultured host cells. EHECDeltadam exhibits dramatically elevated levels of adherence and pedestal formation when compared with wild-type EHEC, and expresses significantly higher protein levels of intimin, Tir and EspF(U). Analyses of GFP fusions, Northern blotting, reverse transcription polymerase chain reaction, and microarray experiments indicate that the abundance of Tir in the dam mutant is not due to increased transcription levels, raising the possibility that Dam methylation can indirectly control protein expression by a post-transcriptional mechanism. In contrast to other dam-deficient pathogens, EHECDeltadam is capable of robust intestinal colonization of experimentally infected animals.

Download full-text


Available from: Andrew J Roe,
30 Reads
  • Source
    • "Actin filaments are stained by FITC-phalloidin in this assay to visualize condensed actin indicative of A/E lesions. FAS assays for EHEC typically involve a 5–6 h incubation time [48], [58]. We infected HeLa cells with EHEC producing wild type or mutant H-NST for 4 h, a point at which A/E lesion formation is minimal yet detectable [48]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli are important causes of morbidity and mortality worldwide. These enteric pathogens contain a type III secretion system (T3SS) responsible for the attaching and effacing (A/E) lesion phenotype. The T3SS is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. The H-NS-mediated repression of LEE expression is counteracted by Ler, the major activator of virulence gene expression in A/E pathogens. A regulator present in EPEC, H-NST, positively affects expression of H-NS regulon members in E. coli K-12, although the effect of H-NST on LEE expression and virulence of A/E pathogens has yet-to-be determined. We examine the effect of H-NST on LEE expression and A/E lesion formation on intestinal epithelial cells. We find that H-NST positively affects the levels of LEE-encoded proteins independently of ler and induces A/E lesion formation. We demonstrate H-NST binding to regulatory regions of LEE1 and LEE3, the first report of DNA-binding by H-NST. We characterize H-NST mutants substituted at conserved residues including Ala16 and residues Arg60 and Arg63, which are part of a potential DNA-binding domain. The single mutants A16V, A16L, R60Q and the double mutant R60Q/R63Q exhibit a decreased effect on LEE expression and A/E lesion formation. DNA mobility shift assays reveal that these residues are important for H-NST to bind regulatory LEE DNA targets. H-NST positively affects Ler binding to LEE DNA in the presence of H-NS, and thereby potentially helps Ler displace H-NS bound to DNA. H-NST induces LEE expression and A/E lesion formation likely by counteracting H-NS-mediated repression. We demonstrate that H-NST binds to DNA and identify arginine residues that are functionally important for DNA-binding. Our study suggests that H-NST provides an additional means for A/E pathogens to alleviate repression of virulence gene expression by H-NS to promote virulence capabilities.
    PLoS ONE 01/2014; 9(1):e86618. DOI:10.1371/journal.pone.0086618 · 3.23 Impact Factor
  • Source
    • "Gnotobiotic piglets were derived and infected orally with TUV93- 0, which is deficient for the expression of Stx, thus eliminating the potentially confounding toxigenic effects on colonization (Tzipori et al., 1995), as described previously (Campellone et al., 2007; Ritchie et al., 2008; Brady et al., 2011). To quantify bacteria in the small intestine, the small intestine was divided into five parts and each section was viewed individually for the presence of bacteria and AE lesions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Upon binding to intestinal epithelial cells, enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium trigger formation of actin pedestals beneath bound bacteria. Pedestal formation has been associated with enhanced colonization, and requires intimin, an adhesin that binds to the bacterial effector Tir, which is translocated to the host cell membrane and promotes bacterial adherence and pedestal formation. Intimin has been suggested to also promote cell adhesion by binding one or more host receptors, and allelic differences in intimin have been associated with differences in tissue and host specificity. We assessed the function of EHEC, EPEC, or C. rodentium intimin, or a set of intimin derivatives with varying Tir-binding abilities in animal models of infection. We found that EPEC and EHEC intimin were functionally indistinguishable during infection of gnotobiotic piglets by EHEC, and that EPEC, EHEC, and C. rodentium intimin were functionally indistinguishable during infection of C57BL/6 mice by C. rodentium. A derivative of EHEC intimin that bound Tir but did not promote robust pedestal formation on cultured cells was unable to promote C. rodentium colonization of conventional mice, indicating that the ability to trigger actin assembly, not simply to bind Tir, is required for intimin-mediated intestinal colonization. Interestingly, streptomycin pre-treatment of mice eliminated the requirement for Tir but not intimin during colonization, and intimin derivatives that were defective in Tir-binding still promoted colonization of these mice. These results indicate that EPEC, EHEC, and C. rodentium are functionally interchangeable during infection of gnotobiotic piglets or conventional C57BL/6 mice, and that whereas the ability to trigger Tir-mediated pedestal formation is essential for colonization of conventional mice, intimin provides a Tir-independent activity during colonization of streptomycin pre-treated mice.
    Frontiers in Microbiology 01/2012; 3:11. DOI:10.3389/fmicb.2012.00011 · 3.99 Impact Factor
  • Source
    • "Enterohemorrhagic Escherichia coli dam and hfq mutants, which each suffer pleomorphic regulatory alterations (Murphy et al., 2008; Bhatt et al., 2011), exhibit increased cell binding, effector translocation, and pedestal formation, similar to that observed here for host-adapted EHEC (Campellone et al., 2007; Hansen and Kaper, 2009; Shakhnovich et al., 2009). It is possible that loss of dam or hfq function mimics some aspects of host adaptation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Upon intestinal colonization, enterohemorrhagic Escherichia coli (EHEC) induces epithelial cells to generate actin "pedestals" beneath bound bacteria, lesions that promote colonization. To induce pedestals, EHEC utilizes a type III secretion system to translocate into the mammalian cell bacterial effectors such as translocated intimin receptor (Tir), which localizes in the mammalian cell membrane and functions as a receptor for the bacterial outer membrane protein intimin. Whereas EHEC triggers efficient pedestal formation during mammalian infection, EHEC cultured in vitro induces pedestals on cell monolayers with relatively low efficiency. To determine whether growth within the mammalian host enhances EHEC pedestal formation, we compared in vitro-cultivated bacteria with EHEC directly isolated from infected piglets. Mammalian adaptation by EHEC was associated with a dramatic increase in the efficiency of cell attachment and pedestal formation. The amounts of intimin and Tir were significantly higher in host-adapted than in in vitro-cultivated bacteria, but increasing intimin or Tir expression, or artificially increasing the level of bacterial attachment to mammalian cells, did not enhance pedestal formation by in vitro-cultivated EHEC. Instead, a functional assay suggested that host-adapted EHEC translocate Tir much more efficiently than does in vitro-cultivated bacteria. These data suggest that adaptation of EHEC to the mammalian intestine enhances bacterial cell attachment, expression of intimin and Tir, and translocation of effectors that promote actin signaling.
    Frontiers in Microbiology 11/2011; 2:226. DOI:10.3389/fmicb.2011.00226 · 3.99 Impact Factor
Show more