Article

Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse.

Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Circulation Research (Impact Factor: 11.86). 04/2007; 100(5):670-7. DOI: 10.1161/01.RES.0000260204.40510.aa
Source: PubMed

ABSTRACT Macrophage low-density lipoprotein receptor-related protein (LRP) mediates internalization of remnant lipoproteins, and it is generally thought that blocking lipoprotein internalization will reduce foam cell formation and atherogenesis. Therefore, our study examined the function of macrophage LRP in atherogenesis. We generated transgenic mice that specifically lack macrophage LRP through Cre/lox recombination. Transplantation of macrophage LRP(-/-) bone marrow into lethally irradiated female LDLR(-/-) recipient mice resulted in a 40% increase in atherosclerosis. The difference in atherosclerosis was not caused by altered serum lipoprotein levels. Furthermore, deletion of macrophage LRP decreased uptake of (125)I-very-low-density lipoprotein compared with wild-type cells in vitro. The increase in atherosclerosis was accompanied by increases in monocyte chemoattractant protein type-1, tumor necrosis factor-alpha, and proximal aorta macrophage cellularity. We also found that deletion of macrophage LRP increases matrix metalloproteinase-9. This increase in matrix metalloproteinase-9 was associated with a higher frequency of breaks in the elastic lamina. Contrary to what was found with other lipoprotein receptors, deletion of LRP increases atherogenesis in hypercholesterolemic mice. Our data support the hypothesis that macrophage LRP modulates atherogenesis through regulation of inflammatory responses.

0 Bookmarks
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Idiopathic dilated cardiomyopathy (IDCM) is characterized by adverse ventricular remodeling attributed to altered activity of extracellular matrix metalloproteinase (MMP). MMP overactivation is linked to changes in extracellular signal-regulated kinases (ERK), reportedly modulated by the low-density lipoprotein receptor-related protein 1 (LRP1) receptor. The aim of this work was to compare the levels, membrane distribution and interactions of LRP1, ERK1,2 and MMP2/9 in control and IDCM myocardium. METHODS: Left ventricle samples from IDCM patients and control subjects were collected to analyze gene and protein expression by Real-time PCR and Western blot, respectively. Fractions enriched in cholesterol, Flotillin-1 and Caveolin-3 (rafts) were isolated from the remaining membrane (non-rafts) by sucrose gradient ultracentrifugation. We assessed the formation of LRP1-ERK1,2 complexes and MMP activity by immunoprecipitation and zymography, respectively. RESULTS: In control myocardium, LRP1 was exclusively found in non-rafts while activation of ERK1,2 was preferentially detected in rafts. LRP1/p-ERK1,2 complexes were almost undetectable in rafts and non-rafts. In contrast, in IDCM myocardium, LRP1 moved to rafts and ERK1,2 activation was found in raft and non-raft fractions. Moreover, LRP1/p-ERK1,2 complexes were also found in both membrane fractions, although the amount was higher in non-rafts where MMP9 overactivation was exclusively detected. CONCLUSIONS: The presented findings demonstrate a differential membrane compartmentalisation of ERK signaling in IDCM myocardium. The movement of LRP1 to rafts and the concomitant increase in non-raft-related ERK1,2/MMP9 activation may have crucial clinical implications in the progression of disease.
    International Journal of Cardiology 08/2014; · 6.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr) on antigen presenting cells (APCs) has been shown to enhance invariant natural killer T (iNKT) cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP), plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ). We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO). LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC) elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.
    PLoS ONE 01/2014; 9(7):e102236. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The natural history of abdominal aortic aneurysms (AAAs) suggests that some remain slow in growth rate whereas many develop a more accelerated growth rate and reach a threshold for intervention. We hypothesized that different mechanisms are responsible for AAAs that remain slow growing and never become actionable vs the aggressive AAAs that require intervention and may be reflected by distinct associations with genetic polymorphisms. AAA growth rate was determined from serial imaging data in 168 control and 141 AAA patients with ultrasound or computed tomography imaging studies covering ∼5 years. Genetic polymorphisms all previously reported as showing a significant correlation with AAA with functional effects on the expression or function were determined by analysis of the genomic DNA, including angiotensin 1 receptor (rs5186), interleukin-10 (IL-10; rs1800896), methyl-tetrahydrofolate reductase (rs1801133), low-density lipoprotein receptor-related protein 1 (LRP1; rs1466535), angiotensin-converting enzyme (rs1799752), and several matrix metalloproteinase 9 (MMP-9) single nucleotide polymorphisms. Of the AAA patients, 81 were classified as slow AAA growth rate (<3.25 mm/y) vs 60 with aggressive AAA growth rate (>3.25 mm/y, those presenting with a rupture, or those with maximal aortic diameter >5.5 cm [male] or >5.0 cm [female]). Discriminating confounds between the groups were identified by logistic regression. Analyses identified MMP-9 p-2502 single nucleotide polymorphism (odds ratio [OR], 0.54; 95% confidence interval [CI], 0.31-0.94; P = .029) as a significant confound discriminating between control vs slow-growth AAA, MMP-9 D165N (OR, 0.49; 95% CI, 0.26-0.95; P = .035) and LRP1 (OR, 4.99; 95% CI, 1.13-22.1; P = .034) between control vs aggressive-growth AAAs, and methyltetrahydrofolate reductase (OR, 2.99; 95% CI, 1.01-8.86; P = .048), MMP-9 p-2502 (OR, 2.19; 95% CI, 1.05-4.58; P = .037), and LRP1 (OR, 4.96; 95% CI, 1.03-23.9; P = .046) as the statistically significant confounds distinguishing slow-growth AAAs vs aggressive-growth AAAs. Logistic regression identified different genetic confounds for the slow-growth and aggressive-growth AAAs, indicating a potential for different genetic influences on AAAs of distinct aggressiveness. Future logistic regression studies investigating for potential genetic or clinical confounds for this disease should take into account the growth rate and size of the AAA to better identify confounds likely to be associated with aggressive AAAs likely to require intervention.
    Journal of vascular surgery: official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 05/2014; · 3.52 Impact Factor

Full-text

Download
0 Downloads