Analysis of the effects diclofenac has on Japanese medaka (Oryzias latipes) using real-time PCR.

National Research Laboratory on Environmental Biotechnology, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
Chemosphere (Impact Factor: 3.5). 06/2007; 67(11):2115-21. DOI: 10.1016/j.chemosphere.2006.12.090
Source: PubMed

ABSTRACT The expression levels of cytochrome P450 1A, p53 and vitellogenin were investigated in three different tissues of male medaka fish after exposure to diclofenac that is one of the main concerns among pharmaceuticals frequently found in sewage treatment plant (STP) effluents. The results showed that cytochrome P450 1A, p53 and vitellogenin were highly expressed in tissue-specific gene expression patterns after exposure to 8 mg/l and 1 microg/l of diclofenac. These elevated expression levels of three biomarkers suggested that diclofenac has potential to cause cellular toxicity, p53-related genotoxicity and estrogenic effects. It is also noteworthy that diclofenac has the potential to cause these effects even at an environmentally relevant concentration of diclofenac, 1 microg/l.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aqueous solution of diclofenac sodium (DCFNa) from commercial analgesic pill was electro-oxidized on platinum and stainless steel (SS) anodes. On platinum anode, 66% degradation of the parent drug was achieved at pH 4.5 with a corresponding COD reduction of 49% for a specific charge of 4200 Coulombs/L. Degradation and COD reduction were less at higher pHs of 8.5 and 10.9. A number of intermediates were detected with some of them persisting at the end of the treatment. On SS anode, 84% drug removal and 80% COD decline were achieved for a specific charge of 4200 Coulombs/L at pH 10.9, owing to combined electro-oxidation and electrocoagulation. Contrary to platinum anode, here the drug removal and COD reduction were lesser at lower pHs of 8.5 and 4.5. Electrocoagulation was found to proceed with the organics directly forming complex with iron in the matrix of the SS anode with the iron oxidizing to Fe(III) at pH 10.9 and Fe(II) at pHs 8.5 and 4.5. Intermediates detected in residual liquid were much less in number and abundance.
    Environmental Technology 09/2014; 35(17-20):2483-92. · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450 (CYP) 3 enzymes are highly expressed in detoxification organs and play an important role in xenobiotic metabolism. In fish, the CYP3 family is diversified and includes several subfamilies (CYP3B, CYP3C, and CYP3D) not found in mammals. The functional role and expression patterns of these novel genes are unknown. In this study, the expression patterns of novel teleost CYP3 genes were determined in Japanese ricefish (medaka, Oryzias latipes; CYP3B4, CYP3B5, CYP3B6) and zebrafish (Danio rerio; CYP3C1, CYP3C2, CYP3C3, CYP3C4), two important model fish species. Expression was quantified with real time PCR in multiple internal organs from adult male and female fish. CYP3C gene expression was determined in zebrafish embryos. Expression in all organs was detected for all genes, except for CYP3B4 in male organs. CYP3C1, CYP3C3, CYP3B4, CYP3B5, and CYP3B6 were more highly expressed in liver and/or intestine from at least one gender, suggesting a role in xenobiotic metabolism. Expression of CYP3C1 and CYP3B5 in olfactory rosette was comparable to liver. CYP3C1, CYP3C4, CYP3B5 and CYP3B6 expression was higher in the female organs; CYP3C2 and CYP3B5 were higher in testis. Estrogen and androgen responses elements were found upstream of the start site of many of these genes raising the hypothesis that they are under steroid regulation. CYP3C1-3 were expressed in all developmental stages examined and appear to be maternally deposited. The expression patterns suggest that some of these CYP genes are involved in xenobiotic metabolism.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 07/2014; 166. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Globally, pharmaceutical drugs namely Clofibric acid and Diclofenac are commonly detected in water•Aquatic contamination by pharmaceutical drugs is an important issue and emerging as a new environmental problem•We analyzed the toxicity of Clofibric acid and Diclofenac in an Indian major carp, Cirrhinus mrigala•Both the drugs (1, 10 and 100 μg L-l) induced alterations in the thyroid hormones•This parameters could be used as biomarkers for pharmaceutical toxicity to fish
    Environmental Toxicology and Pharmacology 10/2014; · 1.86 Impact Factor