Article

The role of sphingosine 1-phosphate in the TNF-alpha induction of IL-8 gene expression in lung epithelial cells.

Department of Molecular Biology, University of Texas Health Center at Tyler, 11937 US Highway 271 Tyler, TX 75708-3154, USA.
Gene (Impact Factor: 2.08). 05/2007; 391(1-2):150-60. DOI: 10.1016/j.gene.2006.12.011
Source: PubMed

ABSTRACT Tumor necrosis factor-alpha (TNF-alpha) is an important cytokine involved in the pathogenesis of inflammatory diseases of the lung. Interleukin-8 (IL-8), a C-X-C chemokine, is induced by TNF-alpha and initiates injury by acting as a chemoattractant for neutrophils and other immune cells. Although sphingolipids such as ceramide and sphingosine 1-phosphate (S1-P) have been shown to serve as signaling molecules in the TNF-alpha inflammatory response, their role in the TNF-alpha induction of IL-8 gene expression in lung epithelial cells is not known. We investigated the role of sphingolipids in the TNF-alpha induction of IL-8 gene expression in H441 lung epithelial cells. We found that TNF-alpha induced IL-8 mRNA levels by increasing gene transcription, and the stability of IL-8 mRNA was not affected. Exogenous S1-P but not ceramide or sphingosine increased IL-8 mRNA levels and IL-8 secretion. Dimethylsphingosine, an inhibitor of sphingosine kinase, partially inhibited TNF-alpha induction of IL-8 mRNA levels indicating the importance of intracellular increases in S1-P in the IL-8 induction. S1-P induction of IL-8 mRNA was due to an increase in gene transcription, and the stability of IL-8 mRNA was not affected. S1-P induction of IL-8 mRNA was associated with an increase in the binding activity of AP-1 but the activities of NF-kappaB and NF IL-6 were unchanged. S1-P induced the phosphorylation of ERK, p38 and JNK MAPKs. Pharmacological inhibitors of ERK and p38 but not JNK partly inhibited S1-P induction of IL-8 mRNA levels. These data show that increases in the intracellular S1-P partly mediate TNF-alpha induction of IL-8 gene expression in H441 lung epithelial cells via ERK and p38 MAPK signaling pathways and increased AP-1 DNA binding.

1 Bookmark
 · 
143 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes.
    International Journal of Molecular Sciences 07/2014; 15(7):12807-12841. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dermal fibroblasts are important regulators of inflammatory and immune responses in the skin. The aim of the present study was to elucidate the interaction between two key players in inflammation, Toll-like receptors (TLRs) and sphingosine 1-phosphate (S1P), in normal human fibroblasts in the context of inflammation, fibrosis and cell migration. We demonstrate that TLR2 ligation strongly enhances the production of the pro-inflammatory cytokines IL-6 and IL-8. S1P significantly induces pro-inflammatory cytokines time- and concentration-dependently via S1P receptor (S1PR)2 and S1PR3. The TLR2/1 agonist Pam3CSK4 and S1P (>1μM) or TGF-β markedly upregulate IL-6 and IL-8 secretion. Pam3CSK4 and S1P alone promote myofibroblast differentiation as assessed by significant increases of α-smooth muscle actin and collagen I expression. Importantly, costimulation with S1P (>1μM) induces differentiation into myofibroblasts. In contrast, Pam3CSK4 and low S1P concentrations (<1μM) accelerate cell migration. These results suggest that TLR2/1 signaling and S1P cooperate in pro-inflammatory cytokine production and myofibroblast differentation and promote cell migration of skin fibroblasts in a S1P-concentration dependent manner. Our findings provide significant insights into how infectious stimuli or danger signals and sphingolipids contribute to dermal inflammation which may be relevant for skin tissue repair after injury or disease.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 04/2014; 1841(4):484-494. · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Global metabolic profiling using quantitative nuclear magnetic resonance spectroscopy (MRS) and mass spectrometry (MS) is useful for biomarker discovery. The objective of this study was to discover biomarkers of acute lung injury induced by mechanical ventilation (ventilator-induced lung injury [VILI]), by using MRS and MS. Male Sprague-Dawley rats were subjected to two ventilatory strategies for 2.5 h: tidal volume 9 ml/kg, positive end-expiratory pressure 5 cm H2O (control, n = 14); and tidal volume 25 ml/kg and positive end-expiratory pressure 0 cm H2O (VILI, n = 10). Lung tissue, bronchoalveolar lavage fluid, and serum spectra were obtained by high-resolution magic angle spinning and H-MRS. Serum spectra were acquired by high-performance liquid chromatography coupled to quadupole-time of flight MS. Principal component and partial least squares analyses were performed. Metabolic profiling discriminated characteristics between control and VILI animals. As compared with the controls, animals with VILI showed by MRS higher concentrations of lactate and lower concentration of glucose and glycine in lung tissue, accompanied by increased levels of glucose, lactate, acetate, 3-hydroxybutyrate, and creatine in bronchoalveolar lavage fluid. In serum, increased levels of phosphatidylcholine, oleamide, sphinganine, hexadecenal and lysine, and decreased levels of lyso-phosphatidylcholine and sphingosine were identified by MS. This pilot study suggests that VILI is characterized by a particular metabolic profile that can be identified by MRS and MS. The metabolic profile, though preliminary and pending confirmation in larger data sets, suggests alterations in energy and membrane lipids.
    Anesthesiology 11/2013; · 6.17 Impact Factor

Full-text

Download
52 Downloads
Available from
May 17, 2014