Adaptation of Energy Metabolism in Breast Cancer Brain Metastases

Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Cancer Research (Impact Factor: 9.33). 03/2007; 67(4):1472-86. DOI: 10.1158/0008-5472.CAN-06-3137
Source: PubMed


Brain metastases are among the most feared complications in breast cancer, as no therapy exists that prevents or eliminates breast cancer spreading to the brain. New therapeutic strategies depend on specific knowledge of tumor cell properties that allow breast cancer cell growth within the brain tissue. To provide information in this direction, we established a human breast cancer cell model for brain metastasis based on circulating tumor cells from a breast cancer patient and variants of these cells derived from bone or brain lesions in immunodeficient mice. The brain-derived cells showed an increased potential for brain metastasis in vivo and exhibited a unique protein expression profile identified by large-scale proteomic analysis. This protein profile is consistent with either a selection of predisposed cells or bioenergetic adaptation of the tumor cells to the unique energy metabolism of the brain. Increased expression of enzymes involved in glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation pathways suggests that the brain metastatic cells derive energy from glucose oxidation. The cells further showed enhanced activation of the pentose phosphate pathway and the glutathione system, which can minimize production of reactive oxygen species resulting from an enhanced oxidative metabolism. These changes promoted resistance of brain metastatic cells to drugs that affect the cellular redox balance. Importantly, the metabolic alterations are associated with strongly enhanced tumor cell survival and proliferation in the brain microenvironment. Thus, our data support the hypothesis that predisposition or adaptation of the tumor cell energy metabolism is a key element in breast cancer brain metastasis, and raise the possibility of targeting the functional differentiation in breast cancer brain lesions as a novel therapeutic strategy.

Download full-text


Available from: Katja Becker,
  • Source
    • "Recent studies with two isogenic murine breast cancer cell lines derived from the same spontaneous breast tumor, 4T1 and 67NR [16], have shown differences in lactate dehydrogenase (LDH) A expression during normoxia and hypoxia [17]. However, other studies have highlighted the importance of oxidative phosphorylation (OXPHOS) in tumorigenesis and progression [18] [19] [20]. Because it is well recognized that tumor cells are often hypoxic and nutritionally deprived in vivo[7], we have monitored in real time the metabolic changes in live 4T1 and 67NR cells under conditions that reflect these common, often transient, physiologic stresses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of 13C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only) > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells), leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1) provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2) lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism. Full article:
    Neoplasia (New York, N.Y.) 08/2015; 17(8):671-684. DOI:10.1016/j.neo.2015.08.005 · 4.25 Impact Factor
  • Source
    • "AMPK is a key regulator of energy homeostasis within cells. On activation, AMPK switches off the ATP-consuming biosynthetic pathways (e.g., fatty acid synthesis) and activates the ATP-generating metabolic pathways (e.g., fatty acid oxidation) to preserve the ATP levels for cell survival [33]. This study was the first to unmask AMPK activation as a possible mechanism for the intrinsic correlation between OA and different cell fates. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer and breast cancer have a clear tendency toward metastasis and invasion to the microenvironment predominantly composed of adipocytes. Oleic acid is an abundant monounsaturated fatty acid that releases from adipocytes and impinges on different energy metabolism responses. The effect and underlying mechanisms of oleic acid on highly metastatic cancer cells are not completely understood. We reported that AMP-activated protein kinase (AMPK) was obviously activated in highly aggressive carcinoma cell lines treated by oleic acid, including gastric carcinoma HGC-27 and breast carcinoma MDA-MB-231 cell lines. AMPK enhanced the rates of fatty acid oxidation and ATP production and thus significantly promoted cancer growth and migration under serum deprivation. Inactivation of AMPK attenuated these activities of oleic acid. Oleic acid inhibited cancer cell growth and survival in low metastatic carcinoma cells, such as gastric carcinoma SGC7901 and breast carcinoma MCF-7 cell lines. Pharmacological activation of AMPK rescued the cell viability by maintained ATP levels by increasing fatty acid β-oxidation. These results indicate that highly metastatic carcinoma cells could consume oleic acid to maintain malignancy in an AMPK-dependent manner. Our findings demonstrate the important contribution of fatty acid oxidation to cancer cell function.
    PLoS ONE 05/2014; 9(5):e97330. DOI:10.1371/journal.pone.0097330 · 3.23 Impact Factor
  • Source
    • "Tumor acidosis is often associated with metastasis and resistance to cancer therapeutics in patients [6,7]. Interestingly, the two major changes we observed here in cancer cells under acidosis, elevated levels of G6PD and increased PPP, both of which show the importance of the regeneration of reducing equivalents to cancer proliferation, are also both also associated with brain metastasis [56,57] and drug resistance [58,59]. Additionally, extracellular acidosis forces breast cancer cells to engage in a series of dysregulated metabolic adaptations in order to adapt to the changing extracellular environment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis. Acidosis increased both glutaminolysis and fatty acid beta-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes. Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are redirected away from several other critical metabolic processes, including ribose and glutathione synthesis. These alterations lead to both a decrease in cellular proliferation and increased sensitivity to ROS. Collectively, these data reveal a role for p53 in cellular metabolic reprogramming under acidosis, in order to permit increased bioenergetic capacity and ROS neutralization. Understanding the metabolic adaptations that cancer cells make under acidosis may present opportunities to generate anti-tumor therapeutic agents that are more tumor-specific.
    12/2013; 1(1):23. DOI:10.1186/2049-3002-1-23
Show more