Article

AMP-activated protein kinase in metabolic control and insulin signaling.

Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK.
Circulation Research (Impact Factor: 11.09). 03/2007; 100(3):328-41. DOI: 10.1161/01.RES.0000256090.42690.05
Source: PubMed

ABSTRACT The AMP-activated protein kinase (AMPK) system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Activation in response to increases in AMP involves phosphorylation by an upstream kinase, the tumor suppressor LKB1. In certain cells (eg, neurones, endothelial cells, and lymphocytes), AMPK can also be activated by a Ca(2+)-dependent and AMP-independent process involving phosphorylation by an alternate upstream kinase, CaMKKbeta. Once activated, AMPK switches on catabolic pathways that generate ATP, while switching off ATP-consuming processes such as biosynthesis and cell growth and proliferation. The AMPK complex contains 3 subunits, with the alpha subunit being catalytic, the beta subunit containing a glycogen-sensing domain, and the gamma subunits containing 2 regulatory sites that bind the activating and inhibitory nucleotides AMP and ATP. Although it may have evolved to respond to metabolic stress at the cellular level, hormones and cytokines such as insulin, leptin, and adiponectin can interact with the system, and it now appears to play a key role in maintaining energy balance at the whole body level. The AMPK system may be partly responsible for the health benefits of exercise and is the target for the antidiabetic drug metformin. It is a key player in the development of new treatments for obesity, type 2 diabetes, and the metabolic syndrome.

1 Bookmark
 · 
131 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Polyphenol-rich marine macroalgae are gaining dietary importance due to their influence over diabetes mellitus and the role as a vital source of high-value nutraceuticals. Their assorted beneficial effects on human health include competitive inhibition of digestive enzymes, varying the activity of hepatic glucose-metabolizing enzymes, lowering the plasma glucose levels, and lipid peroxidation, delaying the aging process. Objective: In this paper, we review the health beneficial effects of polyphenols and phlorotannins from brown seaweeds with special emphasis on their inhibitory effects on carbohydrate-metabolizing enzymes. Methods: A survey of literature from databases such as Sciencedirect, Scopus, Pubmed, Springerlink, and Google Scholar from the year 1973 to 2013 was done to bring together the information relating to drug discovery from brown seaweeds as a source for diabetes treatment. Results: Over the past two decades, 20 different bioactive polyphenols/phlorotannins have been isolated and studied from 10 different brown algae. Discussion of the positive effect on the inhibition of enzymes metabolizing carbohydrates in both in vitro and in vivo experiments are included. Conclusion: Despite the recent advancements in isolating bioactive compounds from seaweeds with potential health benefit or pharmaceutical behavior, studies on the polyphenol effectiveness on glucose homeostasis in human beings are very few in response to their functional characterization. Added research in this area is required to confirm the close connection of polyphenol rich seaweed-based diet consumption with glucose homeostasis and the exciting possibility of prescribing polyphenols to treat the diabetes pandemic.
    Pharmaceutical Biology 01/2015; · 1.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: Adenosine 5'-monophosphate (AMP)-activated protein kinase (Ampk) modulates a wide array of cellular functions and regulates various ion channels and transporters. In failing human hearts an increased Ampkα1 activity was observed. The present study aimed to uncover the impact of Ampkα1 on cardiac electrical remodeling. Methods: Gene-targeted mice lacking functional Ampkα1 (Ampkα1-/-) and corresponding wild-type mice were exposed to pressure overload by “transverse aortic constriction” (TAC). In vivo electrophysiology was performed with a single catheter technique, myocardial conduction velocities and conduction characteristics investigated in isolated hearts, transcript levels quantified by RT-PCR and protein abundance determined by Western blotting. Moreover, connexin 43 (Cx43) was expressed in Xenopus oocytes with or without coexpression of wild-type or mutant AMPK and Cx43 protein abundance quantified utilizing confocal microscopy. Results: TAC treatment increased Ampkα1 protein expression in cardiac tissue from wild-type mice. TAC further increased left ventricular conduction inhomogeneity and triggered conduction blocks, effects blunted in the Ampkα1-/- mice. TAC treatment decreased Cx43 protein abundance in cardiac tissue, an effect again significantly blunted in the Ampkα1-/- mice. TAC treatment did not modify Cx43 mRNA levels but increased ubiquitination of Cx43 protein, an effect mitigated by Ampkα1 deficiency. As shown in Xenopus oocytes, Cx43 cell membrane protein abundance was significantly downregulated by wild-type AMPKWT and constitutively active AMPKγR70Q, but not by catalytically inactive AMPKαK45R. Conclusion: Ampkα1 stimulates ubiquitination of the gap junction protein Cx43, thereby contributing to gap junction remodeling following pressure overload.
    Cellular Physiology and Biochemistry 01/2015; 35(1):406-418. · 3.55 Impact Factor

Preview

Download
3 Downloads

Mhairi Towler