Pneumocystis stimulates MCP-1 production by alveolar epithelial cells through a JNK-dependent mechanism

Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.08). 07/2007; 292(6):L1495-505. DOI: 10.1152/ajplung.00452.2006
Source: PubMed


Pneumocystis carinii is an opportunistic fungal pathogen that causes pneumonia (PCP) in immunocompromised individuals. Recent studies have demonstrated that the host's immune response is clearly responsible for the majority of the pathophysiological changes associated with PCP. P. carinii interacts closely with alveolar epithelial cells (AECs); however, the nature and pathological consequences of the epithelial response remain poorly defined. Monocyte chemotactic protein-1 (MCP-1) is involved in lung inflammation, immunity, and epithelial repair and is upregulated during PCP. To determine whether AECs are an important source of MCP-1 in the P. carinii-infected lung, in vivo and in vitro studies were performed. In situ hybridization showed that MCP-1 mRNA was localized to cells with morphological characteristics of AECs in the lungs of infected mice. In vitro studies demonstrated that P. carinii stimulated a time- and dose-dependent MCP-1 response in primary murine type II cells that was preceded by JNK activation. Pharmacological inhibition of JNK nearly abolished P. carinii-stimulated MCP-1 production, while ERK, p38 MAPK, and TNF receptor signaling were not required. Furthermore, delivery of a JNK inhibitory peptide specifically to pulmonary epithelial cells using a recombinant adenovirus vector blocked the early lung MCP-1 response following intratracheal instillation of infectious P. carinii. JNK inhibition did not affect P. carinii-stimulated production of macrophage inflammatory protein-2 in vitro or in vivo, indicating that multiple signaling pathways are activated in P. carinii-stimulated AECs. These data demonstrate that AECs respond to P. carinii in a proinflammatory manner that may contribute to the generation of immune-mediated lung injury.

2 Reads
  • Source
    • "The stress activated protein kinase (SAPK) c-Jun N-terminal kinase (JNK) is another protein kinase that is activated in response to environmental stress. In addition to its contribution to cellular differentiation and apoptosis, activated JNK is involved in inducing the production of inflammatory cytokines [20], [21], [56]. JNK phosphorylation also showed different kinetics between HRV16 and HRV1A. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Major- and minor-group human rhinoviruses (HRV) enter their host by binding to the cell surface molecules ICAM-1 and LDL-R, respectively, which are present on both macrophages and epithelial cells. Although epithelial cells are the primary site of productive HRV infection, previous studies have implicated macrophages in establishing the cytokine dysregulation that occurs during rhinovirus-induced asthma exacerbations. Analysis of the transcriptome of primary human macrophages exposed to major- and minor-group HRV demonstrated differential gene expression. Alterations in gene expression were traced to differential mitochondrial activity and signaling pathway activation between two rhinovirus serotypes, HRV16 (major-group) and HRV1A (minor-group), upon initial HRV binding. Variances in phosphorylation of kinases (p38, JNK, ERK5) and transcription factors (ATF-2, CREB, CEBP-alpha) were observed between the major- and minor-group HRV treatments. Differential activation of signaling pathways led to changes in the production of the asthma-relevant cytokines CCL20, CCL2, and IL-10. This is the first report of genetically similar viruses eliciting dissimilar cytokine release, transcription factor phosphorylation, and MAPK activation from macrophages, suggesting that receptor use is a mechanism for establishing the inflammatory microenvironment in the human airway upon exposure to rhinovirus.
    PLoS ONE 04/2014; 9(4):e93897. DOI:10.1371/journal.pone.0093897 · 3.23 Impact Factor
  • Source
    • "In this manner JNK1 plays an important role in transcriptional regulation in response to a number of stimuli. JNK1 is activated by the gram-negative bacterial component lipopolysaccharide (LPS) via TLR4 [8]–[9] and JNK1 is required for chemokine production by macrophages [10]–[11]. These data suggest an important role for JNK1 in innate immune responses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1 signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 -/- mice were challenged with Escherichia coli, Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 -/- mice and epithelial cells were stimulated with IL-17A. The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small impact on the host response to S. aureus. JNK1 -/- mice had decreased Influenza A burden in viral pneumonia, yet displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel therapeutic target in pneumonia.
    PLoS ONE 04/2012; 7(4):e34638. DOI:10.1371/journal.pone.0034638 · 3.23 Impact Factor
  • Source
    • "Other signaling pathways such as mitogen-activated protein kinase (MAPK) have also been shown to contribute to the inflammatory response to Pneumocystis. We found that the JNK pathway mediates MCP-1 production by Pneumocystis-stimulated primary murine AEC cultures [37]. In addition, Carmona et al. detected ERK and P38 activation in human AECs following exposure to Pneumocystis  β-glucan [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pneumocystis is an opportunistic fungal respiratory pathogen that causes life-threatening pneumonia (Pcp) in patients suffering from defects in cell-mediated immunity, including those with acquired immunodeficiency syndrome (AIDS) and immunosuppression secondary to chemotherapy or organ transplantation. Despite major advances in health care, the mortality associated with Pcp has changed little over the past 25  years. Pcp remains a leading cause of death among HIV infected patients, with mortality rates of 50% or higher for patients developing severe Pcp. In addition, as more potent immunosuppressive therapies are developed for chronic inflammatory diseases, more cases of Pcp are occurring in non-HIV patients and in previously unreported clinical settings. These features highlight the importance of developing a better understanding of the pathogenesis of this disease, and the need to search for new therapeutic strategies to improve the outcome of Pcp patients. Immune-mediated inflammatory responses play an important role in the pathogenesis of Pcp, and may be even more significant in determining the outcome of Pcp than direct damage due to the organism itself. In this review we will summarize the immunopathogenic mechanisms that contribute to Pcp-associated lung injury, and discuss the potential to target these pathways for adjunctive immune modulation therapy for Pcp.
    Interdisciplinary Perspectives on Infectious Diseases 08/2011; 2011(1687-708X):918038. DOI:10.1155/2011/918038
Show more