Article

A simple model system for the study of carbohydrate--aromatic interactions.

Universita' di Milano, Dipartimento di Chimica Organica e Industriale e Centro di Eccellenza CISI, via Venezian 21, 20133 Milano, Italy.
Journal of the American Chemical Society (Impact Factor: 10.68). 04/2007; 129(10):2890-900. DOI: 10.1021/ja066633g
Source: PubMed

ABSTRACT A molecular scaffold was identified which enables the establishment of intramolecular interactions between a monosaccharide and a nearby phenyl ring. A group of molecules containing four different monosaccharides (glucose, galactose, N-acetyl-glucosamine, and N-acetyl-galactosamine) was synthesized and used to investigate the extent and nature of this carbohydrate-arene interaction, as well as the effect on the overall 3D structure of the molecules involved. The sugar-aromatic distance was evaluated by rigorous NMR studies supported by molecular modeling and found to be constant throughout the series, independent of the nature of the sugar and of the conformational behavior of the fragment connecting the two elements. Ab initio calculations at the B3LYP/DZV(2d,p) level of theory enable the analysis of the electronic nature of the interaction. The study shows that, given the opportunity, persistent intramolecular aromatic-sugar interactions can be established and can significantly influence overall molecular shape and energetics. These results have important implications in the design of structural mimics of oligosaccharides.

0 Bookmarks
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins employ aromatic residues for carbohydrate binding in a wide range of biological functions. Glycoside hydrolases, which are ubiquitous in nature, typically exhibit tunnels, clefts, or pockets lined with aromatic residues for processing carbohydrates. Mutation of these aromatic residues often results in significant activity differences on insoluble and soluble substrates. However, the thermodynamic basis and molecular level role of these aromatic residues remain unknown. Here, we calculate the relative ligand binding free energy by mutating tryptophans in the Trichoderma reesei family 6 cellulase (Cel6A) to alanine. Removal of aromatic residues near the catalytic site has little impact on the ligand binding free energy, suggesting that aromatic residues immediately upstream of the active site are not directly involved in binding, but play a role in the glucopyranose ring distortion necessary for catalysis. Removal of aromatic residues at the entrance and exit of the Cel6A tunnel, however, dramatically impacts the binding affinity, suggesting that these residues play a role in chain acquisition and product stabilization, respectively. The roles suggested from differences in binding affinity are confirmed by molecular dynamics and normal mode analysis. Surprisingly, our results illustrate that aromatic-carbohydrate interactions vary dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, these results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biomass utilization. Generally, these results suggest that nature employs aromatic-carbohydrate interactions with a wide range of binding affinities for diverse functions.
    Journal of Biological Chemistry 09/2011; 286(47):41028-35. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of noncovalent interactions in carbohydrate recognition by aromatic amino acids has long been reported. To develop a molecular understanding of noncovalent interactions in the recognition process, we have examined a series of binary complexes between 3-methylindole (3-MeIn) and sugars. In particular, the geometries and binding affinities of 3-MeIn with α/β-D-glucose, β-D-galactose, α-D-mannose and α/β-L-fucose are obtained using the MP2(full)/6-31G(d,p) and the M06/TZV2D//MP2/6-31G(d,p) level of theories. The conventional hydrogen bonding such as N-H···O and C-H···O as well as nonconventional O-H···π and C-H···π type of interactions is, in general, identified as responsible for the moderately strong interaction energies. Large variations in the position-orientations of 3-MeIn with respect to saccharide are noticed, within the same sugar family, as well as across different sugar series. Furthermore, complexes with large differences in their geometries are recognized as capable of exhibiting very similar interaction energies, underscoring the significance of exhaustive conformation sampling, as carried out in the present study. These observations are readily attributed to the differences in the efficiency of the type of interactions enlisted above. The highest and lowest interaction energies, upon inclusion of 50% BSSE correction, are found to be -16.02 and -6.22 kcal mol(-1), respectively, for α-D-glucose (1a) and α-L-fucose (5j). While more number of prominent conventional hydrogen bonding contacts remains as a characteristic feature of the strongly bound complexes, the lower end of the interaction energy spectrum is dominated by multiple C-H···π interactions. The complexes exhibiting as many as four C-H···π contacts are identified in the case of α/β-D-glucose, β-D-galactose, and α/β-L-fucose with an interaction energy hovering around -8 kcal mol(-1). The presence of effective C-H···π interactions is found to be dependent on the saccharide configuration as well as the area of the apolar patch constituted by the C-H groups. The study offers a comprehensive set of binary complexes, across different saccharides, which serves as an illustration of the significance and ubiquitous nature of C-H···π interactions in carbohydrate binding in saccharide-protein complexes.
    Physical Chemistry Chemical Physics 03/2011; 13(14):6517-30. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 8-Hydroxyquinoline-based receptors 1-3, containing a trisubstituted triethylbenzene core, were prepared and their binding properties towards glycosides were evaluated. (1)H NMR and fluorescence titrations as well as binding studies in two-phase systems, such as dissolution of solid carbohydrates in apolar media and phase transfer of sugars from aqueous into organic solvents, revealed β- vs.α-anomer binding preferences in the recognition of glycosides. Compared to the previously described three-armed aminopyridine-based receptor, compounds 1 and 2 showed significantly increased affinity to β-galactoside. Receptor 2, incorporating two 8-hydroxyquinoline units, was shown to be the most effective receptor for β-galactoside. Compound 3, bearing one 8-hydroxyquinoline group, was found to be a highly effective receptor for β-glucoside and shown to be a more powerful receptor than the quinoline-based compound 4, indicating an important role of the quinoline hydroxy group in the complex formation.
    Organic & Biomolecular Chemistry 02/2011; 9(7):2319-26. · 3.57 Impact Factor

Full-text (2 Sources)

View
154 Downloads
Available from
May 28, 2014