Article

Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk.

Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, MD 20892, USA.
Nature Cell Biology (Impact Factor: 20.06). 04/2007; 9(3):299-309. DOI: 10.1038/ncb1540
Source: PubMed

ABSTRACT Non-muscle myosin II has diverse functions in cell contractility, cytokinesis and locomotion, but the specific contributions of its different isoforms have yet to be clarified. Here, we report that ablation of the myosin IIA isoform results in pronounced defects in cellular contractility, focal adhesions, actin stress fibre organization and tail retraction. Nevertheless, myosin IIA-deficient cells display substantially increased cell migration and exaggerated membrane ruffling, which was dependent on the small G-protein Rac1, its activator Tiam1 and the microtubule moter kinesin Eg5. Myosin IIA deficiency stabilized microtubules, shifting the balance between actomyosin and microtubules with increased microtubules in active membrane ruffles. When microtubule polymerization was suppressed, myosin IIB could partially compensate for the absence of the IIA isoform in cellular contractility, but not in cell migration. We conclude that myosin IIA negatively regulates cell migration and suggest that it maintains a balance between the actomyosin and microtubule systems by regulating microtubule dynamics.

0 Followers
 · 
183 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-muscle myosin 2 (NM2) is a major force-producing, actin-based motor in mammalian non-muscle cells, where it plays important roles in a broad range of fundamental biological processes, including cytokinesis, cell migration, and epithelial barrier function. This breadth of function at the tissue and cellular levels suggests extensive diversity and differential regulation of NM2 bipolar filaments, the major, if not sole, functional form of NM2s in vivo. Previous in vitro, cellular and animal studies indicate that some of this diversity is supported by the existence of multiple NM2 isoforms. Moreover, two recent studies have shown that these isoforms can co-assemble to form heterotypic filaments, further expanding functional diversity. In addition to isoform co-assembly, cells may differentially regulate NM2 function via isoform-specific expression, RLC phosphorylation, MHC phosphorylation or regulation via binding partners. Here, we provide a brief summary of NM2 filament assembly, summarize the recent findings regarding NM2 isoform co-assembly, consider the mechanisms cells might utilize to differentially regulate NM2 isoforms, and review the data available to support these mechanisms.
    Experimental Cell Research 02/2015; DOI:10.1016/j.yexcr.2015.01.012 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network - with transcriptional coactivators YAP and TAZ at the center stage - that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 06/2015; 52. DOI:10.1016/j.biomaterials.2015.01.078 · 8.31 Impact Factor
  • Source
    Protein Phosphorylation in Human Health, Edited by Cai Huang, 01/2012: chapter 10; Intech Open Science., ISBN: ISBN 978-953-51-0737-8

Full-text (2 Sources)

Download
490 Downloads
Available from
May 15, 2014