Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk.

Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, MD 20892, USA.
Nature Cell Biology (Impact Factor: 20.06). 04/2007; 9(3):299-309. DOI: 10.1038/ncb1540
Source: PubMed

ABSTRACT Non-muscle myosin II has diverse functions in cell contractility, cytokinesis and locomotion, but the specific contributions of its different isoforms have yet to be clarified. Here, we report that ablation of the myosin IIA isoform results in pronounced defects in cellular contractility, focal adhesions, actin stress fibre organization and tail retraction. Nevertheless, myosin IIA-deficient cells display substantially increased cell migration and exaggerated membrane ruffling, which was dependent on the small G-protein Rac1, its activator Tiam1 and the microtubule moter kinesin Eg5. Myosin IIA deficiency stabilized microtubules, shifting the balance between actomyosin and microtubules with increased microtubules in active membrane ruffles. When microtubule polymerization was suppressed, myosin IIB could partially compensate for the absence of the IIA isoform in cellular contractility, but not in cell migration. We conclude that myosin IIA negatively regulates cell migration and suggest that it maintains a balance between the actomyosin and microtubule systems by regulating microtubule dynamics.

Download full-text


Available from: Sharona Even-Ram, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The actin cytoskeleton, which regulates cell polarity, adhesion, and migration, can influence cancer progression, including initial acquisition of malignant properties by normal cells, invasion of adjacent tissues, and metastasis to distant sites. Actin-dependent molecular motors, myosins, play key roles in regulating tumor progression and metastasis. In this review, we examine how non-muscle myosins regulate neoplastic transformation and cancer cell migration and invasion. Members of the myosin superfamily can act as either enhancers or suppressors of tumor progression. This review summarizes the current state of knowledge on how mutations or epigenetic changes in myosin genes and changes in myosin expression may affect tumor progression and patient outcomes and discusses the proposed mechanisms linking myosin inactivation or upregulation to malignant phenotype, cancer cell migration, and metastasis. © 2014 Wiley Periodicals, Inc.
    Cytoskeleton 08/2014; 71(8). DOI:10.1002/cm.21187 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesions (FAs) have key roles in the interaction of cells with the extracellular matrix (ECM) and in adhesion-mediated signaling. These dynamic, multi-protein structures sense the ECM both chemically and physically, and respond to external and internal forces by changing their size and signaling activity. However, this mechanosensitivity is still poorly understood at the molecular level. Here, we present direct evidence that actomyosin contractility regulates the molecular kinetics of FAs. We show that the molecular turnover of proteins within FAs is primarily regulated by their dissociation rate constant (k(off)), which is sensitive to changes in forces applied to the FA. We measured the early changes in k(off) values for three FA proteins (vinculin, paxillin and zyxin) upon inhibition of actomyosin-generated forces using two methods - high temporal resolution FRAP and direct measurement of FA protein dissociation in permeabilized cells. When myosin II contractility was inhibited, the k(off) values for all three proteins changed rapidly, in a highly protein-specific manner: dissociation of vinculin from FAs was facilitated, whereas dissociation of paxillin and zyxin was attenuated. We hypothesize that these early kinetic changes initiate FA disassembly by affecting the molecular turnover of FAs and altering their composition.
    Journal of Cell Science 05/2011; 124(Pt 9):1425-32. DOI:10.1242/jcs.077388 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell antigen receptor signaling is triggered and controlled in specialized cellular interfaces formed between T cells and antigen-presenting cells named immunological synapses. Both microtubules and actin cytoskeleton rearrange at the immunological synapse in response to T cell receptor triggering, ensuring in turn the accuracy of intracellular signaling. Recent reports show that the cross-talk between the cortical actin cytoskeleton and microtubule networks is key for structuring the immunological synapse and for controlling T cell receptor signaling. Immunological synapse architecture and the interaction between the signaling machinery and various cytoskeletal elements are therefore crucial for the fine-tuning of T cell signaling.
    FEBS letters 12/2010; 584(24):4845-50. DOI:10.1016/j.febslet.2010.09.001 · 3.34 Impact Factor