Article

Convergence of congenic mapping and allele-specific alterations in tumors for the resolution of the Skts1 skin tumor susceptibility locus

UCSF Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
Oncogene (Impact Factor: 8.56). 07/2007; 26(28):4171-8. DOI: 10.1038/sj.onc.1210206
Source: PubMed

ABSTRACT Although several familial cancer genes with high-penetrance mutations have been identified, the major genetic component of susceptibility to sporadic cancers is attributable to low-penetrance alleles. These 'weak' tumor susceptibility genes do not segregate as single Mendelian traits and are therefore difficult to find in studies of human populations. Previously, we have proposed that a combination of germline mapping and analysis of allele-specific imbalance in tumors may be used to refine the locations of susceptibility genes using mouse models of cancer. Here, we have used linkage analysis and congenic mouse strains to map the major skin tumor susceptibility locus Skts1 within a genetic interval of 0.9 cM on proximal chromosome 7. This interval lies in an apparent recombination cold spot, and corresponds to a physical distance of about 15 Mb. We therefore, used patterns of allele-specific imbalances in tumors from backcross and congenic mice to refine the location of Skts1. We demonstrate that this single tumor modifier locus has a dramatic effect on the allelic preference for imbalance on chromosome 7, with at least 90% of tumors from the congenics showing preferential gain of markers on the chromosome carrying the susceptibility variant. Importantly, these alterations enabled us to refine the location of Skts1 at higher resolution than that attained using the congenic mice. We conclude that low-penetrance susceptibility genes can have strong effects on patterns of allele-specific somatic genetic changes in tumors, and that analysis of the directionality of these somatic events provides an important and rapid route to identification of germline genetic variants that confer increased cancer risk.

Download full-text

Full-text

Available from: Jian-Hua Mao, Jun 24, 2014
0 Followers
 · 
61 Views
  • Source
    • "For example, a particular heterozygous locus in a tumor may ''prefer'' to have one germline allele somatically amplified over another. Such an event has been demonstrated in a targeted fashion in mouse skin tumors (Nagase et al. 2003; de Koning et al. 2007) and in human colorectal cancers (Ewart-Toland et al. 2003; Hienonen et al. 2006). The latter studies found the AURKA gene to be preferentially amplified when containing a low penetrance (T > A) germline variant. "
    [Show abstract] [Hide abstract]
    ABSTRACT: During tumor initiation and progression, cancer cells acquire a selective advantage, allowing them to outcompete their normal counterparts. Identification of the genetic changes that underlie these tumor acquired traits can provide deeper insights into the biology of tumorigenesis. Regions of copy number alterations and germline DNA variants are some of the elements subject to selection during tumor evolution. Integrated examination of inherited variation and somatic alterations holds the potential to reveal specific nucleotide alleles that a tumor "prefers" to have amplified. Next-generation sequencing of tumor and matched normal tissues provides a high-resolution platform to identify and analyze such somatic amplicons. Within an amplicon, examination of informative (e.g., heterozygous) sites deviating from a 1:1 ratio may suggest selection of that allele. A naive approach examines the reads for each heterozygous site in isolation; however, this ignores available valuable linkage information across sites. We, therefore, present a novel hidden Markov model-based method-Haplotype Amplification in Tumor Sequences (HATS)-that analyzes tumor and normal sequence data, along with training data for phasing purposes, to infer amplified alleles and haplotypes in regions of copy number gain. Our method is designed to handle rare variants and biases in read data. We assess the performance of HATS using simulated amplified regions generated from varying copy number and coverage levels, followed by amplicons in real data. We demonstrate that HATS infers the amplified alleles more accurately than does the naive approach, especially at low to intermediate coverage levels and in cases (including high coverage) possessing stromal contamination or allelic bias.
    Genome Research 11/2011; 22(2):362-74. DOI:10.1101/gr.122564.111 · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For more than 60 years, the chemical induction of tumors in mouse skin has been used to study mechanisms of epithelial carcinogenesis and evaluate modifying factors. In the traditional two-stage skin carcinogenesis model, the initiation phase is accomplished by the application of a sub-carcinogenic dose of a carcinogen. Subsequently, tumor development is elicited by repeated treatment with a tumor-promoting agent. The initiation protocol can be completed within 1-3 h depending on the number of mice used; whereas the promotion phase requires twice weekly treatments (1-2 h) and once weekly tumor palpation (1-2 h) for the duration of the study. Using the protocol described here, a highly reproducible papilloma burden is expected within 10-20 weeks with progression of a portion of the tumors to squamous cell carcinomas within 20-50 weeks. In contrast to complete skin carcinogenesis, the two-stage model allows for greater yield of premalignant lesions, as well as separation of the initiation and promotion phases.
    Nature Protocol 02/2009; 4(9):1350-62. DOI:10.1038/nprot.2009.120 · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer susceptibility is essentially attributable to multiple low-penetrance genes. Using interspecific consomic and congenic mice between the tumor-resistant SEG/Pas and the tumor-sensitive C57BL/6J strains, a region on chromosome 19 involved in the genetic resistance to gamma-irradiation-induced T-cell lymphomas (Tlyr1) has been identified. Through the development of nonoverlapping subcongenic strains, it has been further shown that Anxa1 may be a candidate resistance gene on the basis of its differential expression in thymus stroma cells after gamma-radiation exposure. In addition, thymus stroma cells of thymic lymphomas exhibited a significant reduction in the expression levels of Anxa1. Interestingly, the activity of Anxa1 relies on prostaglandin E(2) (PGE(2)) induction that brings about apoptosis in thymocytes. In fact, in vitro transfection experiments revealed that PGE(2) production was enhanced when HEK 293 cells were transfected with full-length cDNAs of Anxa1, with PGE(2) production in the cells transfected with the allele of the resistant strain (Anxa1(Tyr)) being higher than that in cells transfected with the allele of the susceptible strain (Anxa1(Phe)). Furthermore, the presence of this compound in the medium induced apoptosis of immature CD4(+)CD8(+)CD3(low) cells in a dose-dependent manner. These results improve our knowledge of the molecular mechanisms triggering T-cell lymphoblastic lymphoma development while highlighting the relevance of the stroma in controlling genetic susceptibility and the use of PGE(2) as a new therapeutic approach in T-cell hematologic malignancies.
    Cancer Research 03/2009; 69(6):2577-87. DOI:10.1158/0008-5472.CAN-08-1821 · 9.28 Impact Factor