Article

Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells

Department of Cell Biology, University of Virginia, Charlottesville, VA 22908.
The Journal of Cell Biology (Impact Factor: 9.69). 03/2007; 176(5):573-80. DOI: 10.1083/jcb.200612043
Source: PubMed

ABSTRACT We have used isoform-specific RNA interference knockdowns to investigate the roles of myosin IIA (MIIA) and MIIB in the component processes that drive cell migration. Both isoforms reside outside of protrusions and act at a distance to regulate cell protrusion, signaling, and maturation of nascent adhesions. MIIA also controls the dynamics and size of adhesions in central regions of the cell and contributes to retraction and adhesion disassembly at the rear. In contrast, MIIB establishes front-back polarity and centrosome, Golgi, and nuclear orientation. Using ATPase- and contraction-deficient mutants of both MIIA and MIIB, we show a role for MIIB-dependent actin cross-linking in establishing front-back polarity. From these studies, MII emerges as a master regulator and integrator of cell migration. It mediates each of the major component processes that drive migration, e.g., polarization, protrusion, adhesion assembly and turnover, polarity, signaling, and tail retraction, and it integrates spatially separated processes.

0 Bookmarks
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. Copyright © 2014 Elsevier Inc. All rights reserved.
    Virology 12/2014; 476C:141-150. DOI:10.1016/j.virol.2014.12.016 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In many cases, cell function is intimately linked to cell shape control. We used endothelial cell branching morphogenesis as a model to understand the role of myosin II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell-surface curvature. We find that Rho/ROCK-stimulated myosin II contractility minimizes cell-scale branching by recognizing and minimizing local cell-surface curvature. Using microfabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin II cortical association, where it acts to maintain minimal curvature. The feedback between regulation of myosin II by curvature and control of curvature by myosin II drives cycles of localized cortical myosin II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent experiments have investigated the response of smooth muscle cells to transient stretch-compress (SC) and compress-stretch (CS) maneuvers. The results indicate that the transient SC maneuver causes a sudden fluidization of the cell while the CS maneuver does not. To understand this asymmetric behavior, we have built a biomechanical model to probe the response of stress fibers to the two maneuvers. The model couples the cross-bridge cycle of myosin motors with a viscoelastic Kelvin-Voigt element that represents the stress fiber. Simulation results point to the sensitivity of the myosin detachment rate to tension as the cause for the asymmetric response of the stress fiber to the CS and SC maneuvers. For the SC maneuver, the initial stretch increases the tension in the stress fiber and suppresses myosin detachment. The subsequent compression then causes a large proportion of the myosin population to disengage rapidly from actin filaments. This leads to the disassembly of the stress fibers and the observed fluidization. In contrast, the CS maneuver only produces a mild loss of myosin motors and no fluidization. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
    Biophysical Journal 01/2015; 108(1):43-52. DOI:10.1016/j.bpj.2014.11.015 · 3.83 Impact Factor

Full-text (3 Sources)

Download
12 Downloads
Available from
Jul 9, 2014