BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis.

Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
Journal of Cell Science (Impact Factor: 5.88). 04/2007; 120(Pt 6):964-72. DOI: 10.1242/jcs.002949
Source: PubMed

ABSTRACT Genetic studies in mice and humans have shown that the transforming growth factor-beta (TGF-beta) type-I receptor activin receptor-like kinase 1 (ALK1) and its co-receptor endoglin play an important role in vascular development and angiogenesis. Here, we demonstrate that ALK1 is a signalling receptor for bone morphogenetic protein-9 (BMP-9) in endothelial cells (ECs). BMP-9 bound with high affinity to ALK1 and endoglin, and weakly to the type-I receptor ALK2 and to the BMP type-II receptor (BMPR-II) and activin type-II receptor (ActR-II) in transfected COS cells. Binding of BMP-9 to ALK2 was greatly facilitated when BMPR-II or ActR-II were co-expressed. Whereas BMP-9 predominantly bound to ALK1 and BMPR-II in ECs, it bound to ALK2 and BMPR-II in myoblasts. In addition, we observed binding of BMP-9 to ALK1 and endoglin in glioblastoma cells. BMP-9 activated Smad1 and/or Smad5, and induced ID1 protein and endoglin mRNA expression in ECs. Furthermore, BMP-9 was found to inhibit basic fibroblast growth factor (bFGF)-stimulated proliferation and migration of bovine aortic ECs (BAECs) and to block vascular endothelial growth factor (VEGF)-induced angiogenesis. Taken together, these results suggest that BMP-9 is a physiological ALK1 ligand that plays an important role in the regulation of angiogenesis.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: BMP9, a member of the TGFβ superfamily, is a homodimer that forms a signaling complex with two type I and two type II receptors. Signaling through high-affinity activin receptor-like kinase 1 (ALK1) in endothelial cells, circulating BMP9 acts as a vascular quiescence factor, maintaining endothelial homeostasis. BMP9 is also the most potent BMP for inducing osteogenic signaling in mesenchymal stem cells in vitro and promoting bone formation in vivo. This activity requires ALK1, the lower-affinity type I receptor ALK2, and higher concentrations of BMP9. In adults, BMP9 is constitutively expressed in hepatocytes and secreted into the circulation. Optimum concentrations of BMP9 are essential to maintain the highly specific endothelial-protective function. Factors regulating BMP9 stability and activity remain unknown. Here, we showed by chromatography and a 1.9 Å crystal structure that stable BMP9 dimers could form either with (D-form) or without (M-form) an intermolecular disulfide bond. Although both forms of BMP9 were capable of binding to the prodomain and ALK1, the M-form demonstrated less sustained induction of Smad1/5/8 phosphorylation. The two forms could be converted into each other by changing the redox potential and this redox switch caused a major alteration in BMP9 stability. The M-form displayed greater susceptibility to redox-dependent cleavage by proteases present in serum. This study provides a mechanism for the regulation of circulating BMP9 concentrations, and may provide new rationales for approaches to modify BMP9 levels for therapeutic purposes.
    The Journal of biological chemistry. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoglin, or CD105, is a cell membrane glycoprotein that is overexpressed on proliferating endothelial cells (EC), including those found in malignancies and choroidal neovascularization. Endoglin mediates the transition from quiescent endothelium, characterized by the relatively dominant state of Smad 2/3 phosphorylation, to active angiogenesis by preferentially phosphorylating Smad 1/5/8. The monoclonal antibody TRC105 binds endoglin with high avidity and is currently being tested in phase 1b and phase 2 clinical trials. In this report, we evaluated the effects of TRC105 on primary human umbilical vascular endothelial cells (HUVEC) as a single agent and in combination with bevacizumab. As single agents, both TRC105 and bevacizumab efficiently blocked HUVEC tube formation, and the combination of both agents achieved even greater levels of inhibition. We further assessed the effects of each drug on various aspects of HUVEC function. While bevacizumab was observed to inhibit HUVEC viability in nutrient-limited medium, TRC105 had little effect on HUVEC viability, either alone or in combination with bevacizumab. Additionally, both drugs inhibited HUVEC migration and induced apoptosis. At the molecular level, TRC105 treatment of HUVEC lead to decreased Smad 1/5/8 phosphorylation in response to BMP-9, a primary ligand for endoglin. Together, these results indicate that TRC105 acts as an effective anti-angiogenic agent alone and in combination with bevacizumab.
    Investigational New Drugs 07/2014; · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ProblemSeveral pregnancy complications have disparities based on the sex of the fetus. It is unknown whether the sex of the fetus differentially alters the maternal immune milieu, potentially contributing to the observed differences.Method of studyUsing maternal plasma collected during 38 uncomplicated pregnancies (19 males, 19 females), we compared levels of cytokines, sex hormones, and angiogenic factors throughout gestation and postpartum.ResultsMale fetal sex was associated with higher levels of proinflammatory cytokines (G-CSF, IL-12p70, IL-21, and IL-33) and angiogenic factors (PlGF and VEGF-A) compared with female fetal sex at multiple timepoints. Female fetal sex was associated with higher levels of regulatory cytokines (IL-5, IL-9, IL-17, and IL-25). IL-27 increased throughout pregnancy regardless of fetal sex. There was no fetal sex-based difference in analyte concentrations at the postpartum measurement.Conclusion Women carrying a male fetus exhibit a more proinflammatory/proangiogenic immune milieu than women carrying a female fetus.
    American Journal Of Reproductive Immunology 08/2014; · 3.32 Impact Factor