Article

Heptad repeats regulate protein phosphatase 2A recruitment to I-kappa B kinase gamma/NF-kappa B essential modulator and are targeted by human T-lymphotropic virus type 1 tax

Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2007; 282(16):12119-26. DOI: 10.1074/jbc.M610392200
Source: PubMed

ABSTRACT The switching on-and-off of I-kappaB kinase (IKK) and NF-kappaB occurs rapidly after signaling. How activated IKK becomes down-regulated is not well understood. Here we show that following tumor necrosis factor-alpha stimulation, protein phosphatase 2A (PP2A) association with IKK is increased. A heptad repeat in IKKgamma, helix 2 (HLX2), mediates PP2A recruitment. Two other heptad repeats downstream of HLX2, termed coiled-coil region 2 (CCR2) and leucine zipper (LZ), bind HLX2 and negatively regulate HLX2 interaction with PP2A. HTLV-1 transactivator Tax also binds HLX2, and this interaction is enhanced by CCR2 but reduced by LZ. In the presence of Tax, PP2A-IKKgamma binding is greatly strengthened. Interestingly, peptides spanning CCR2 and/or LZ disrupt IKKgamma-Tax and IKKgamma-PP2A interactions and potently inhibit NF-kappaB activation by Tax and tumor necrosis factor-alpha. We propose that when IKK is resting, HLX2, CCR2, and LZ form a helical bundle in which HLX2 is sequestered. The HLX2-CCR2-LZ bundle becomes unfolded by signal-induced modifications of IKKgamma or after Tax binding. In this conformation, IKK becomes activated. IKKgamma then recruits PP2A via the exposed HLX2 domain for rapid down-regulation of IKK. Tax-PP2A interaction, however, renders PP2A inactive, thus maintaining Tax-PP2A-IKK in an active state. Finally, CCR2 and LZ possibly inhibit IKK activation by stabilizing the HLX2-CCR2-LZ bundle.

0 Bookmarks
 · 
64 Views
  • Frontiers in Bioscience 01/2009; Volume(14):4138. DOI:10.2741/3518 · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyomaviruses are naked viruses with an icosahedral capsid that surrounds a circular double-stranded DNA molecule of about 5000 base-pairs. Their genome encodes at least five proteins: large and small tumor antigens and the capsid proteins VP1, VP2 and VP3. The tumor antigens are expressed during early stages of the viral life cycle and are implicated in the regulation of viral transcription and DNA replication, while the capsid proteins are produced later during infection. Members of the Polyomaviridae family have been isolated in birds (Avipolyomavirus) and mammals (Orthopolyomavirus and Wukipolyomavirus). Some mammalian polyomaviruses encode an additional protein, referred to as agnoprotein, which is a relatively small polypeptide that exerts multiple functions. This review discusses the structure, post-translational modifications, and functions of agnoprotein, and speculates why not all polyomaviruses express this protein.
    Virology 06/2012; 432(2):316-26. DOI:10.1016/j.virol.2012.05.024 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation.
    Journal of Virology 05/2012; 86(14):7530-43. DOI:10.1128/JVI.07021-11 · 4.65 Impact Factor