Somatostatin receptor-binding peptides suitable for tumor radiotherapy with Re-188 or Re-186. Chemistry and initial biological studies

Diatide Research Laboaratories, 9 Delta Dr., Londonderry, New Hampshire 03053, USA.
Journal of Medicinal Chemistry (Impact Factor: 5.48). 03/2007; 50(6):1354-64. DOI: 10.1021/jm061290i
Source: PubMed

ABSTRACT Somatostatin derivative peptides previously designed for radiodiagnostic purposes (99mTc P829 or 99mTc depreotide) were reoptimized for radiotherapy of tumors with rhenium radioisotopes. An optimized pharmacophore peptide P1839 was derived by in vitro binding affinity assay to AR42J rat pancreatic tumor cell membranes. Peptides with chelating domains and their oxorhenium(V) complexes were tested in vitro for binding to NCI H69 human SCLC tumor membranes. Further optimization entailed radiolabeling with 99mTc and biodistribution in an AR42J xenograft mouse model. Kidney uptake was decreased substantially by removing positively charged residues. Neutral N3S diamide amine thiol chelators with no adjacent positive charges had the best overall properties. Substituting an aromatic amino acid into the chelator approximately doubled the tumor uptake. The final optimized peptide P2045 (39) radiolabeled with 99mTc exhibited increased tumor uptake ( approximately 25 %ID/g at 1.5 h), lower kidney uptake ( approximately 4.8 %ID/g at 1.5 h), and extensive urinary excretion (59 %ID at 1.5 h). Finally, comparison biodistribution studies between 99mTc and 188Re (39) showed a good correlation between the two metal complexes and demonstrated prolonged tumor retention (> or =24 h).

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: New mononuclear amidine complexes, fac-[Re(CO)3(Me2bipy)(HNC(CH3)(pyppz))]BF4 [(4,4'-Me2bipy (1), 5,5'-Me2bipy (2), and 6,6'-Me2bipy (3)] (bipy = 2,2'-bipyridine), were synthesized by treating the parent fac-[Re(I)(CO)3(Me2bipy)(CH3CN)]BF4 complex with the C2-symmetrical amine 1-(4-pyridyl)piperazine (pyppzH). The axial amidine ligand has an exposed, highly basic pyridyl nitrogen. The reaction of complexes 1-3 with a B12 model, (py)Co(DH)2Cl (DH = monoanion of dimethylglyoxime), in CH2Cl2 yielded the respective dinuclear complexes, namely, fac-[Re(CO)3(Me2bipy)(μ-(HNC(CH3)(pyppz)))Co(DH)2Cl]BF4 [(4,4'-Me2bipy (4), 5,5'-Me2bipy (5), and 6,6'-Me2bipy (6)]. (1)H NMR spectroscopic analysis of all compounds and single-crystal X-ray crystallographic data for 2, 3, 5, and 6 established that the amidine had only the E configuration in both the solid and solution states and that the pyridyl group is bound to Co in 4-6. Comparison of the NMR spectra of 1-3 with spectra of 4-6 reveals an unusually large "wrong-way" upfield shift for the pyridyl H2/6 signal for 4-6. The wrong-way H2/6 shift of (4-Xpy)Co(DH)2Cl (4-Xpy = 4-substituted pyridine) complexes increased with increasing basicity of the 4-Xpy derivative, a finding attributed to the influence of the magnetic anisotropy of the cobalt center on the shifts of the (1)H NMR signals of the pyridyl protons closest to Co. Our method of employing a coordinate bond for conjugating the fac-[Re(I)(CO)3] core to a vitamin B12 model could be extended to natural B12 derivatives. Because B12 compounds are known to accumulate in cancer cells, such an approach is a very attractive method for the development of (99m)Tc and (186/188)Re radiopharmaceuticals for targeted tumor imaging and therapy.
    Inorganic Chemistry 10/2014; 53(20). DOI:10.1021/ic5016675 · 4.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-small cell lung cancer (NSCLC) is a highly morbid and mortal cancer type that is difficult to eradicate using conventional chemotherapy and radiotherapy. Little is known about whether radionuclide-based pharmaceuticals can be used for treating NSCLC. Here we embedded the therapeutic radionuclide (188)Re in PEGylated (PEG is polyethylene glycol) liposomes and investigated the biodistribution, pharmacokinetics, and therapeutic efficacy of this nanoradiopharmaceutical on NSCLC using a xenograft lung tumor model and the reporter gene imaging techniques.
    Journal of Nuclear Medicine 10/2014; 55(11). DOI:10.2967/jnumed.114.140418 · 5.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
    European Journal of Medicinal Chemistry 09/2014; 87:519–528. DOI:10.1016/j.ejmech.2014.09.082 · 3.43 Impact Factor