Article

FK-506 extended the therapeutic time window for thrombolysis without increasing the risk of hemorrhagic transformation in an embolic rat stroke model.

Division of Neurology, Nephrology and Rheumatology, Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
Brain Research (Impact Factor: 2.88). 05/2007; 1143:221-7. DOI: 10.1016/j.brainres.2007.01.050
Source: PubMed

ABSTRACT FK-506 confers a neuroprotective effect and is thought to extend the time window for thrombolytic treatment of cerebral ischemia. These effects have not been assessed in an embolic stroke model. In addition, clinical studies have raised concern that FK-506 may increase the risk of hemorrhagic transformation by damaging vascular endothelial cells. We investigated whether combined administration of recombinant tissue plasminogen activator (rt-PA) and FK-506 would extend the therapeutic time window without increasing the hemorrhagic transformation in a rat embolic stroke model. Male Sprague-Dawley rats (n=66) were subjected to embolic infarction and assigned into eight groups. Six of the groups were treated with or without FK-506 (0.3 mg/kg) administration at 60 min after embolization, together with and all six groups received systemic rt-PA administration (10 mg/kg) at 60, 90, or 120 min. Two permanent ischemia groups were administered saline either with or without FK-506. Infarct and hemorrhagic volume were assessed at 24 h after embolization. Diffusion-weighted and perfusion-weighted magnetic resonance imaging (MRI) were performed in the groups administered rt-PA at 90 min and a vehicle control group to assess whether FK-506 influenced the effectiveness of MRI in revealing ischemic lesion. FK-506 extended the therapeutic time window for systemic thrombolysis compared to rt-PA alone without increasing the risk for hemorrhage. Combined therapy with FK-506 salvaged some of the MRI, revealing ischemic lesions destined to infarction in the animals treated by rt-PA alone. Single low dose of FK-506 alone did not ameliorate the embolic infarction, but it did prove effective in extending the therapeutic time windows for thrombolysis without increasing the risk of hemorrhagic transformation.

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we describe a therapeutic strategy for attenuating hemorrhagic transformation (HT) after tissue plasminogen activator (tPA) treatment for acute ischemic stroke. Recent studies have shown that tPA treatment is beneficial within 4.5 h of onset for patients with acute ischemic stroke. However, the risk of serious or fatal symptomatic hemorrhage increases with delayed initiation of treatment. HT is considered to be caused by ischemic/reperfusion injury, as well as the toxicity of tPA itself. Therapeutic strategies to attenuate HT after tPA treatment might involve (i) identification of risk factors for HT after tPA treatment and (ii) the development of thrombolytic drugs, which are less likely to cause bleeding, or drugs that can be concomitantly administered for vascular protection. Several studies have shown that matrix metalloproteinases and free radicals are potential therapeutic targets. In addition, we recently showed that inhibition of the vascular endothelial growth factor (VEGF) signaling pathway might be a promising therapeutic strategy for attenuating HT after tPA treatment. Further studies are required to link the results obtained in experimental animal models to human clinical trials.
    Neurology and Clinical Neuroscience. 12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-chain n-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have been shown to reduce ischemic neuronal injury. We investigated the effects of ethyl-EPA (EPA-E) on ischemic brain damage using a rat transient focal cerebral ischemia model. Male Sprague-Dawley rats (n=105) were subjected to 90minutes of focal cerebral ischemia. EPA-E (100mg/kg/day) or vehicle was administered once a day for 3, 5 or 7 days prior to ischemia. Different withdrawal intervals of 3, 5, and 7 days prior to ischemia following 7-day pretreatment with EPA-E or vehicle were also examined. In addition, post-ischemic administration of EPA-E was investigated. Pretreatment with EPA-E for 7 and 5 days, but not 3 days, showed significant infarct volume reduction and neurological improvements when compared with vehicle pretreatment. In addition, withdrawal of EPA-E administration for 3 days, but not 5 and 7 days, also demonstrated significant infarct volume reduction and neurological improvements when compared with vehicle treatment. Post-ischemic treatment of EPA-E did not show any neuroprotection. Immunohistochemistry revealed that 7-day pretreatment with EPA-E significantly reduced cortical expression of 8-hydroxydeoxyguanosine (maker for oxidative DNA damage), 4-hydroxy-2-nonenal (maker for lipid peroxidation), phosphorylated adducin (marker for Rho-kinase activation) and von Willebrand factor (endothelial marker) when compared with vehicle pretreatment. In addition, phosphorylated adducin expression co-localized with von Willebrand factor immunoreactivity. The present study established the neuroprotective effect of EPA-E on ischemic brain damage following transient focal cerebral ischemia in rats, which may be involved in the suppression of oxidative stress and endothelial Rho-kinase activation.
    Brain research 05/2013; · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An angiogenesis factor, angiopoietin-1 (Ang1), is associated with the blood-brain barrier (BBB) disruption after focal cerebral ischemia. However, whether hemorrhagic transformation and cerebral edema after tissue plasminogen activator (tPA) treatment are related to the decrease in Ang1 expression in the BBB remains unknown. We hypothesized that administering Ang1 might attenuate hemorrhagic transformation and cerebral edema after tPA treatment by stabilizing blood vessels and inhibiting hyperpermeability. Sprague-Dawley rats subjected to thromboembolic focal cerebral ischemia were assigned to a permanent ischemia group (permanent middle cerebral artery occlusion; PMCAO) and groups treated with tPA at 1 h or 4 h after ischemia. Endogenous Ang1 expression was observed in pericytes, astrocytes, and neuronal cells. Western blot analyses revealed that Ang1 expression levels on the ischemic side of the cerebral cortex were decreased in the tPA-1h, tPA-4h, and PMCAO groups as compared to those in the control group (P = 0.014, 0.003, and 0.014, respectively). Ang1-positive vessel densities in the tPA-4h and PMCAO groups were less than that in the control group (p = 0.002 and <0.001, respectively) as well as that in the tPA-1h group (p = 0.047 and 0.005, respectively). These results suggest that Ang1-positive vessel density was maintained when tPA was administered within the therapeutic time window (1 h), while it was decreased when tPA treatment was given after the therapeutic time window (4 h). Administering Ang1 fused with cartilage oligomeric protein (COMP) to supplement this decrease has the potential to suppress hemorrhagic transformation as measured by hemoglobin content in a whole cerebral homogenate (p = 0.007) and cerebral edema due to BBB damage (p = 0.038), as compared to administering COMP protein alone. In conclusion, Ang1 might be a promising target molecule for developing vasoprotective therapies for controlling hemorrhagic transformation and cerebral edema after tPA treatment.
    PLoS ONE 01/2014; 9(6):e98639. · 3.53 Impact Factor