CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism.

Department of Neurology, Caritas St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
Human Molecular Genetics (Impact Factor: 6.68). 05/2007; 16(7):848-64. DOI: 10.1093/hmg/ddm030
Source: PubMed

ABSTRACT The C-terminus Hsp70 interacting protein (CHIP) has dual function as both co-chaperone and ubiquitin ligase. CHIP is increasingly implicated in the biology of polyglutamine expansion disorders, Parkinson's disease and tau protein in Alzheimer's disease. We investigated the involvement of CHIP in the metabolism of the beta-amyloid precursor protein and its derivative beta-amyloid (Abeta). Using immunoprecipitation, fluorescence localization and crosslinking methods, endogenous CHIP and betaAPP interact in brain and cultured skeletal myotubes as well as when they are expressed in stable HEK cell lines. Their interaction is confined to Golgi and ER compartments. In the presence of the proteasome inhibitor with MG132, endogenous and expressed betaAPP levels are significantly increased and accordingly, the interaction with CHIP enhanced. Concurrently, levels of Hsp70 were most consistently induced by proteasome inhibition among the various heat shock proteins (HSPs) tested. Thus, complexes of CHIP, Hsp70 and holo-betaAPP (as well as C-terminal fragments) were stabilized by the action of MG132. Moreover, CHIP itself is shown to both increase cellular holo-betaAPP levels and protect it from oxidative stress and degradation. Interestingly, CHIP also promotes the association of ubiquitin with betaAPP, implying that a smaller pool of betaAPP is destined for proteasomal processing. In neuronal cultures, CHIP and Hsp70/90 expression reduce steady-state cellular Abeta levels and hasten its degradation in pulse-chase experiments. The functional significance of CHIP and HSP interactions, especially with Hsp70, was tested using siRNA and in neuronal cells where protection from Abeta-induced toxicity is shown. We conclude that CHIP, as a bimolecular switch, interacts with HSP to stabilize normal holo-betaAPP on the one hand while also assisting in the ubiquitination of a subpopulation of betaAPP molecules that are destined for proteasome degradation. CHIP also hastens the clearance of Abeta in a manner consistent with its known neuroprotective properties.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (AD). Although physical exercise and AD have received attention in the scientific literature, the mechanism through which treadmill exercise may impact the brain insulin signaling of AD has not been elucidated. This study aimed to evaluate the neuroprotective effects of treadmill exercise on apoptotic factors (Bcl-2/Bax ratio, caspase-3), HSP70, COX-2, BDNF and PI3-K/Akt signaling pathway in the cortex of NSE/hPS2m transgenic mice model of AD. Treadmill exercise ameliorated cognitive function in water maze test and significantly increased the level of Bcl-2/Bax ratio and HSP-70 in Tg-exe group compared to Tg-con group; on the other hand, it significantly decreased the expression of caspase-3 and COX-2 in Tg-exe group compared to Tg-con group. In addition, treadmill exercise significantly increased the expression of BDNF and PI3K/Akt in Tg-exe group compared to Tg-con group. Consequently, treadmill exercise improves cognitive function possibly via activating neurotrophic factor, BDNF and PI3k/Akt signaling pathway, and Aβ-induced neuronal cell death in the cortex of Tg mice was markedly suppressed following treadmill exercise. These results suggest that treadmill exercise may be beneficial in preventing or treating Alzheimer's disease.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patient with Alzheimer's disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin-proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-related pathology, it might be an ideal target for AD treatment. We have shown that both in neurons and in HEK-APP cells, BACE1 is a new substrate of E3-ligase CHIP and an inverse relation exists between CHIP and BACE1 level. CHIP inhibits ectopic BACE1 level by promoting its ubiquitination and proteasomal degradation, thus reducing APP processing; it stabilizes APP in neurons, thus reducing Aβ. CHIP(U) (box) domain physically interacts with BACE1; however, both U-box and TPR domain are essential for ubiquitination and degradation of BACE1. Further, BACE1 is a downstream target of p53 and overexpression of p53 decreases BACE1 level. In HEK-APP cells, CHIP is shown to negatively regulate BACE1 promoter through stabilization of p53's DNA-binding conformation and its binding upon 5' UTR element (+127 to +150). We have thus discovered that CHIP regulates p53-mediated trans-repression of BACE1 at both transcriptional and post-translational level. We propose that a CHIP-BACE1-p53 feedback loop might control APP stabilization, which could further be utilized for new therapeutic intervention in AD. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
    Aging Cell 03/2015; DOI:10.1111/acel.12335 · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding proteasome it is well established that it can be activated either through genetic manipulation or through treatments with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes. Copyright © 2014. Published by Elsevier B.V.
    Ageing Research Reviews 12/2014; DOI:10.1016/j.arr.2014.12.003 · 7.63 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014