Koumandou, V. L., Dacks, J. B., Coulson, R. M. & Field, M. C. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29

Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. <>
BMC Evolutionary Biology (Impact Factor: 3.37). 02/2007; 7:29. DOI: 10.1186/1471-2148-7-29
Source: PubMed


In membrane trafficking, the mechanisms ensuring vesicle fusion specificity remain to be fully elucidated. Early models proposed that specificity was encoded entirely by SNARE proteins; more recent models include contributions from Rab proteins, Syntaxin-binding (SM) proteins and tethering factors. Most information on membrane trafficking derives from an evolutionarily narrow sampling of model organisms. However, considering factors from a wider diversity of eukaryotes can provide both functional information on core systems and insight into the evolutionary history of the trafficking machinery. For example, the major Qa/syntaxin SNARE families are present in most eukaryotic genomes and likely each evolved via gene duplication from a single ancestral syntaxin before the existing eukaryotic groups diversified. This pattern is also likely for Rabs and various other components of the membrane trafficking machinery.
We performed comparative genomic and phylogenetic analyses, when relevant, on the SM proteins and components of the tethering complexes, both thought to contribute to vesicle fusion specificity. Despite evidence suggestive of secondary losses amongst many lineages, the tethering complexes are well represented across the eukaryotes, suggesting an origin predating the radiation of eukaryotic lineages. Further, whilst we detect distant sequence relations between GARP, COG, exocyst and DSL1 components, these similarities most likely reflect convergent evolution of similar secondary structural elements. No similarity is found between the TRAPP and HOPS complexes and the other tethering factors. Overall, our data favour independent origins for the various tethering complexes. The taxa examined possess at least one homologue of each of the four SM protein families; since the four monophyletic families each encompass a wide diversity of eukaryotes, the SM protein families very likely evolved before the last common eukaryotic ancestor (LCEA).
These data further support a highly complex LCEA and indicate that the basic architecture of the trafficking system is remarkably conserved and ancient, with the SM proteins and tethering factors having originated very early in eukaryotic evolution. However, the independent origin of the tethering complexes suggests a novel pattern for increasing complexity in the membrane trafficking system, in addition to the pattern of paralogous machinery elaboration seen thus far.

Download full-text


Available from: Mark Field,
    • "For human Vps53 and Vps54 it was found that they can also bind the SNAREs Syntaxin6, Syntaxin16 and VAMP4 [148]. The single subunits contain alternating short coiled-coils connecting a-helical stretches [96,142,143,146,149–151] with homology to other CATCHR members as Dsl, COG or exocyst [96] [97], and their N-terminal regions are responsible for complex assembly "
    [Show abstract] [Hide abstract]
    ABSTRACT: The HOPS multisubunit tethering factor (MTC) is a macromolecular protein complex composed of six different subunits. It is one of the key components in the perception and subsequent fusion of multivesicular bodies and vacuoles. Electron microscopy studies indicate structural flexibility of the purified HOPS complex. Inducing higher rigidity into HOPS by biochemically modifying the complex declines the potential to mediate SNARE-driven membrane fusion. Thus, we propose that integral flexibility seems to be not only a feature, but of essential need for the function of HOPS. This review focuses on the general features of membrane tethering and fusion. For this purpose, we compare the structure and mode of action of different tethering factors to highlight their common central features and mechanisms. Copyright © 2015. Published by Elsevier B.V.
    FEBS letters 06/2015; 589(19). DOI:10.1016/j.febslet.2015.06.001 · 3.17 Impact Factor
  • Source
    • "As an essential protein complex in yeast, it is required for the fusion of Golgi-derived vesicles with the ER. Two of the three subunits have homologs in humans that are involved in retrograde trafficking pathways between the Golgi and ER (48). Structural studies of the yeast Dsl1 complex indicate that Sec39 and Tip20 subunits are bridged by Dsl1 through interactions of the CATCHR domain of Dsl1 with that of Tip20 to assemble a 20 nm structure (68). "
    [Show abstract] [Hide abstract]
    ABSTRACT: CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.
    Frontiers in Endocrinology 12/2013; 4:187. DOI:10.3389/fendo.2013.00187
  • Source
    • "Trs65 allows for the oligomerization of TRAPPII complexes, and Tca17, together with Trs33, act to stabilize these oligomers [55]. Given that Trs65 is conserved only among fungi [37], and that mammalian TRAPP complexes are not organized identically to yeast [56,57], we postulated that Tca17 may represent a more general TRAPP subunit. Indeed, we identified genes encoding Tca17 in 22 of the 31 genomes, with at least one homologue present in an organism from each of the six eukaryotic supergroups. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs), factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during, and possibly pre-dating, the move from free-living marine algae to deadly human parasites.
    PLoS ONE 09/2013; 8(9):e76278. DOI:10.1371/journal.pone.0076278 · 3.23 Impact Factor
Show more