Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins

Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. <>
BMC Evolutionary Biology (Impact Factor: 3.41). 02/2007; 7:29. DOI: 10.1186/1471-2148-7-29
Source: PubMed

ABSTRACT In membrane trafficking, the mechanisms ensuring vesicle fusion specificity remain to be fully elucidated. Early models proposed that specificity was encoded entirely by SNARE proteins; more recent models include contributions from Rab proteins, Syntaxin-binding (SM) proteins and tethering factors. Most information on membrane trafficking derives from an evolutionarily narrow sampling of model organisms. However, considering factors from a wider diversity of eukaryotes can provide both functional information on core systems and insight into the evolutionary history of the trafficking machinery. For example, the major Qa/syntaxin SNARE families are present in most eukaryotic genomes and likely each evolved via gene duplication from a single ancestral syntaxin before the existing eukaryotic groups diversified. This pattern is also likely for Rabs and various other components of the membrane trafficking machinery.
We performed comparative genomic and phylogenetic analyses, when relevant, on the SM proteins and components of the tethering complexes, both thought to contribute to vesicle fusion specificity. Despite evidence suggestive of secondary losses amongst many lineages, the tethering complexes are well represented across the eukaryotes, suggesting an origin predating the radiation of eukaryotic lineages. Further, whilst we detect distant sequence relations between GARP, COG, exocyst and DSL1 components, these similarities most likely reflect convergent evolution of similar secondary structural elements. No similarity is found between the TRAPP and HOPS complexes and the other tethering factors. Overall, our data favour independent origins for the various tethering complexes. The taxa examined possess at least one homologue of each of the four SM protein families; since the four monophyletic families each encompass a wide diversity of eukaryotes, the SM protein families very likely evolved before the last common eukaryotic ancestor (LCEA).
These data further support a highly complex LCEA and indicate that the basic architecture of the trafficking system is remarkably conserved and ancient, with the SM proteins and tethering factors having originated very early in eukaryotic evolution. However, the independent origin of the tethering complexes suggests a novel pattern for increasing complexity in the membrane trafficking system, in addition to the pattern of paralogous machinery elaboration seen thus far.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Asymmetric localization of PIN proteins controls directionality of auxin transport and many aspects of plant development. Directionality of PIN1 within the marginal epidermis and the presumptive veins of developing leaf primordia is crucial for establishing leaf vein pattern. One mechanism that controls PIN protein distribution within the cell membranes is endocytosis and subsequent transport to the vacuole for degradation. The Arabidopsis mutant unhinged-1 (unh-1) has simpler leaf venation with distal non-meeting of the secondary veins and fewer higher order veins, a narrower leaf with prominent serrations, and reduced root and shoot growth. We identify UNH as the Arabidopsis vacuolar protein sorting 51 (VPS51) homolog, a member of the Arabidopsis Golgi-associated retrograde protein (GARP) complex, and show that UNH interacts with VPS52, another member of the complex and colocalizes with trans Golgi network and pre-vacuolar complex markers. The GARP complex in yeast and metazoans retrieves vacuolar sorting receptors to the trans-Golgi network and is important in sorting proteins for lysosomal degradation. We show that vacuolar targeting is reduced in unh-1. In the epidermal cells of unh-1 leaf margins, PIN1 expression is expanded. The unh-1 leaf phenotype is partially suppressed by pin1 and cuc2-3 mutations, supporting the idea that the phenotype results from expanded PIN1 expression in the marginal epidermis. Our results suggest that UNH is important for reducing expression of PIN1 within margin cells, possibly by targeting PIN1 to the lytic vacuole.
    Development 05/2014; 141(9):1894-905. DOI:10.1242/dev.099333 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system.
    Origin and Evolution of Eukaryotes, Edited by Patrick J. Keeling, Eugene V. Koonin, 10/2014: chapter 14: pages 219-232; Cold Spring Harbor Laboratory Press., ISBN: 978-1-621820-28-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tetrahymena thermophila, a member of the Ciliates, represents a class of organisms distantly related from commonly used model organisms in cell biology, and thus offers an opportunity to explore potentially novel mechanisms and their evolution. Ciliates, like all eukaryotes, possess a complex network of organelles that facilitate both macromolecular uptake and secretion. The underlying endocytic and exocytic pathways are key mediators of a cell's interaction with its environment, and may therefore show niche-specific adaptations. Our laboratory has taken a variety of approaches to identify key molecular determinants for membrane trafficking pathways in Tetrahymena. Studies of Rab GTPases, dynamins, and sortilin-family receptors substantiate the widespread conservation of some features but also uncover surprising roles for lineage-restricted innovation. J. Exp. Zool. (Mol. Dev. Evol.) 9999B: XX–XX, 2014. © 2014 Wiley Periodicals, Inc.
    Journal of Experimental Zoology Part B Molecular and Developmental Evolution 11/2014; 322(7). DOI:10.1002/jez.b.22564 · 1.88 Impact Factor

Full-text (3 Sources)

Available from
Jun 3, 2014