Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome

Laval University, Quebec City, Quebec, Canada
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2007; 282(17):12851-9. DOI: 10.1074/jbc.M610502200
Source: PubMed

ABSTRACT Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in modulating chromatin structure, regulation of gene expression, and sensing DNA damage. Here, we report that PARP-1 enzymatic activity is inhibited by macroH2A, a vertebrate histone H2A variant that is enriched on facultative heterochromatin. MacroH2A family members have a large C-terminal non-histone domain (NHD) and H2A-like histone domain. MacroH2A1.2 and PARP-1 interact in vivo and in vitro via the NHD. The NHD of each macroH2A family member was sufficient to inhibit PARP-1 enzymatic activity in vitro. The NHD of macroH2A1.2 was a mixed inhibitor of PARP-1 catalytic activity, with affects on both catalytic activity and the substrate binding affinity of PARP-1. Depletion of PARP-1 by RNA interference caused reactivation of a reporter gene on the inactive X chromosome, demonstrating that PARP-1 participates in the maintenance of silencing. These results suggest that one function of macroH2A in gene silencing is to inhibit PARP-1 enzymatic activity, and this may affect PARP-1 association with chromatin.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soft x-ray tomography (SXT) is increasingly being recognized as a valuable method for visualizing and quantifying the ultrastructure of cryopreserved cells. Here, we describe the combination of SXT with cryogenic confocal fluorescence tomography (CFT). This correlative approach allows the incorporation of molecular localization data, with isotropic precision, into high-resolution three-dimensional (3-D) SXT reconstructions of the cell. CFT data are acquired first using a cryogenically adapted confocal light microscope in which the specimen is coupled to a high numerical aperture objective lens by an immersion fluid. The specimen is then cryo-transferred to a soft x-ray microscope (SXM) for SXT data acquisition. Fiducial markers visible in both types of data act as common landmarks, enabling accurate coalignment of the two complementary tomographic reconstructions. We used this method to identify the inactive X chromosome (Xi) in female v-abl transformed thymic lymphoma cells by localizing enhanced green fluorescent protein-labeled macroH2A with CFT. The molecular localization data were used to guide segmentation of Xi in the SXT reconstructions, allowing characterization of the Xi topological arrangement in near-native state cells. Xi was seen to adopt a number of different topologies with no particular arrangement being dominant.
    Biophysical Journal 10/2014; 107(8):1988-96. DOI:10.1016/j.bpj.2014.09.011 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
    Cold Spring Harbor perspectives in biology 01/2015; 7(1). DOI:10.1101/cshperspect.a019364 · 8.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein ADP-ribosylation is an ancient posttranslational modification with high biochemical complexity. It alters the function of modified proteins or provides a scaffold for the recruitment of other proteins and thus regulates several cellular processes. ADP-ribosylation is governed by ADP-ribosyltransferases and a subclass of sirtuins (writers), is sensed by proteins with specific binding modules (readers) that recognize certain parts of the ADP-ribosyl posttranslational modification, and is removed by ADP-ribosylhydrolases (erasers). The large amount of experimental data generated and technical progress made in the last decade have significantly advanced our knowledge of the function of ADP-ribosylation at the molecular level. This review emphasizes nuclear ADP-ribosylation reactions and their role in chromatin plasticity, cell differentiation, and epigenetics and discusses current progress and future perspectives. Expected final online publication date for the Annual Review of Biochemistry Volume 84 is June 02, 2015. Please see for revised estimates.
    Annual Review of Biochemistry 02/2015; 84(1). DOI:10.1146/annurev-biochem-060614-034506 · 26.53 Impact Factor