Article

Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome.

Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California 94304-5485, USA.
Nature Neuroscience (Impact Factor: 14.98). 05/2007; 10(4):411-3. DOI: 10.1038/nn1860
Source: PubMed

ABSTRACT Ts65Dn mice, a model for Down syndrome, have excessive inhibition in the dentate gyrus, a condition that could compromise synaptic plasticity and mnemonic processing. We show that chronic systemic treatment of these mice with GABAA antagonists at non-epileptic doses causes a persistent post-drug recovery of cognition and long-term potentiation. These results suggest that over-inhibition contributes to intellectual disabilities associated with Down syndrome and that GABAA antagonists may be useful therapeutic agents for this disorder.

1 Follower
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of the psychopharmacology of benzodiazepines continues to provide new insights into diverse brain functions related to vigilance, anxiety, mood, epileptiform activity, schizophrenia, cognitive performance, and autism-related social behavior. In this endeavor, the discovery of the benzodiazepine receptor was a key event, as it supplied the primary benzodiazepine drug-target site, provided the molecular link to the allosteric modulation of GABAA receptors and, following the recognition of GABAA receptor subtypes, furnished the platform for future, more selective drug actions. This review has two parts. In a retrospective first part, it acknowledges the contributions to the field made by my collaborators over the years, initially at Hoffmann-La Roche in Basle and later, in academia, at the University and the ETH of Zurich. In the second part, the new frontier of GABA pharmacology, targeting GABAA receptor subtypes, is reviewed with special focus on nonsedative anxiolytics, antidepressants, analgesics, as well as enhancers of cognition in Down syndrome and attenuators of symptoms of autism spectrum disorders. It is encouraging that a clinical trial has been initiated with a partial inverse agonist acting on α5 GABAA receptors in an attempt to alleviate the cognitive deficits in Down syndrome. © 2015 Elsevier Inc. All rights reserved.
    Advances in pharmacology (San Diego, Calif.) 01/2015; 72:1-36. DOI:10.1016/bs.apha.2014.10.008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Neuroscience Letters 01/2015; DOI:10.1016/j.neulet.2015.01.011 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40-50. All individuals with DS will also develop the neuropathology of Alzheimer's disease (AD) by the age of 30-40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700-1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies.
    Drug Design, Development and Therapy 01/2015; 9:103-125. DOI:10.2147/DDDT.S51476 · 3.03 Impact Factor

Full-text (2 Sources)

Download
470 Downloads
Available from
Jun 2, 2014